Category Archives: Probabilistic Model of Range

December 8, 2008

UZR/PMR Comparison

Dan Turkenkopf runs correlations of UZR and PMR and I find them surprisingly low, given the two systems use the same data.

Both PMR and UZR were calculated using the Baseball Info Solutions (BIS) data set this season. I wonder if David or MGL might be able to give some ideas as to where the differences might come from.

I don’t know enough about the UZR calculations to speculate. I base my models mostly on visiting players in parks, however. UZR might use all the data. I also don’t know if UZR, like +/-, doesn’t penalize players for outs made by others. In PMR. If the right fielder catches a ball that the centerfielder might be able to catch, the centerfielder is penalized. In +/-, the centerfielder is not. Given the low correlation with centerfielders, I suspect that’s the case.

December 7, 2008 December 1, 2008 November 29, 2008 November 23, 2008

Probabilistic Model of Range, 2008, Defense Behind Pitchers

As we know, a pitcher’s ERA can be influenced by the defense behind him. This posts explores which pitchers were helped or hurt by their defenses based on how well fielders turned balls in play into outs based on how difficult they were off the bat.

Team PMR, 2008, Defense Behind Pitchers, Visit Smooth Distance Model, 2008 data only
Pitcher Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Chien-Ming Wang NYY 306 215 200.92 0.703 0.657 107.01
Daisuke Matsuzaka Bos 449 327 306.07 0.728 0.682 106.84
Jesse Litsch Tor 569 407 382.14 0.715 0.672 106.51
Tim Wakefield Bos 539 405 382.33 0.751 0.709 105.93
Ryan Rowland-Smith Sea 366 262 249.06 0.716 0.680 105.20
Justin Duchscherer Oak 409 308 292.97 0.753 0.716 105.13
CC Sabathia Cle 334 228 217.23 0.683 0.650 104.96
Tim Hudson Atl 435 317 302.69 0.729 0.696 104.73
Scott Kazmir TB 378 277 264.57 0.733 0.700 104.70
Roy Oswalt Hou 617 436 416.75 0.707 0.675 104.62
Jeremy Sowers Cle 409 279 266.73 0.682 0.652 104.60
CC Sabathia Mil 353 246 235.49 0.697 0.667 104.46
Armando Galarraga Det 525 391 375.29 0.745 0.715 104.19
Greg Smith Oak 578 423 406.63 0.732 0.704 104.03
John Lackey LAA 469 329 316.59 0.701 0.675 103.92
Kyle Kendrick Phi 560 380 365.69 0.679 0.653 103.91
Glen Perkins Min 520 357 343.77 0.687 0.661 103.85
Ryan Dempster ChC 572 406 391.16 0.710 0.684 103.80
Shaun Marcum Tor 427 317 305.52 0.742 0.716 103.76
Paul Byrd Cle 446 319 307.48 0.715 0.689 103.75
Brian Moehler Hou 509 356 343.33 0.699 0.675 103.69
R.A. Dickey Sea 374 263 253.88 0.703 0.679 103.59
Joe Saunders LAA 623 445 429.72 0.714 0.690 103.56
Dustin McGowan Tor 337 228 220.26 0.677 0.654 103.51
Adam Wainwright StL 404 289 279.63 0.715 0.692 103.35
Josh Beckett Bos 492 333 322.69 0.677 0.656 103.19
Jorge Campillo Atl 490 347 336.39 0.708 0.687 103.16
Ben Sheets Mil 589 417 404.45 0.708 0.687 103.10
John Lannan Was 560 401 389.21 0.716 0.695 103.03
Zach Miner Det 385 276 268.08 0.717 0.696 102.95
Kevin Slowey Min 480 340 330.37 0.708 0.688 102.92
Vicente Padilla Tex 524 356 345.93 0.679 0.660 102.91
Jake Peavy SD 459 331 322.53 0.721 0.703 102.63
Jeremy Guthrie Bal 587 428 417.45 0.729 0.711 102.53
Cole Hamels Phi 635 464 453.13 0.731 0.714 102.40
David Bush Mil 567 422 413.33 0.744 0.729 102.10
Paul Maholm Pit 621 437 428.22 0.704 0.690 102.05
Jeff Francis Col 469 321 314.83 0.684 0.671 101.96
John Danks CWS 569 396 388.39 0.696 0.683 101.96
Scott Baker Min 497 354 347.21 0.712 0.699 101.96
Roy Halladay Tor 713 501 491.48 0.703 0.689 101.94
Matt Garza TB 560 399 391.43 0.712 0.699 101.93
Micah Owings Ari 312 220 215.84 0.705 0.692 101.93
Johan Santana NYM 668 476 467.22 0.713 0.699 101.88
Scott Feldman Tex 488 344 337.73 0.705 0.692 101.86
Oliver Perez NYM 527 380 373.11 0.721 0.708 101.85
Derek Lowe LAD 644 453 444.85 0.703 0.691 101.83
Scott Olsen Fla 640 463 454.69 0.723 0.710 101.83
Felix Hernandez Sea 577 391 384.12 0.678 0.666 101.79
Doug Davis Ari 457 303 298.15 0.663 0.652 101.63
Edwin Jackson TB 582 401 394.74 0.689 0.678 101.59
Dan Haren Ari 610 421 414.60 0.690 0.680 101.54
Aaron Cook Col 725 489 481.78 0.674 0.665 101.50
Kyle Lohse StL 650 453 446.33 0.697 0.687 101.49
Jeff Suppan Mil 589 407 401.18 0.691 0.681 101.45
Hiroki Kuroda LAD 598 418 412.03 0.699 0.689 101.45
Dana Eveland Oak 519 351 346.09 0.676 0.667 101.42
Jered Weaver LAA 513 355 350.05 0.692 0.682 101.41
Todd Wellemeyer StL 579 419 413.37 0.724 0.714 101.36
Carlos Zambrano ChC 570 404 398.66 0.709 0.699 101.34
Jamie Moyer Phi 625 437 431.36 0.699 0.690 101.31
Jon Garland LAA 684 462 456.10 0.675 0.667 101.29
Braden Looper StL 653 453 447.51 0.694 0.685 101.23
Miguel Batista Sea 379 257 254.22 0.678 0.671 101.09
Jair Jurrjens Atl 589 401 397.07 0.681 0.674 100.99
Matt Cain SF 630 436 431.93 0.692 0.686 100.94
Kevin Correia SF 382 248 245.75 0.649 0.643 100.91
Gavin Floyd CWS 625 450 446.51 0.720 0.714 100.78
Javier Vazquez CWS 598 405 401.92 0.677 0.672 100.77
Tim Lincecum SF 562 385 382.12 0.685 0.680 100.75
Jason Marquis ChC 554 390 387.25 0.704 0.699 100.71
Aaron Harang Cin 552 379 376.37 0.687 0.682 100.70
Jose Contreras CWS 402 280 278.09 0.697 0.692 100.69
Johnny Cueto Cin 500 344 341.79 0.688 0.684 100.65
Joel Pineiro StL 505 342 339.90 0.677 0.673 100.62
Brad Penny LAD 311 212 211.06 0.682 0.679 100.45
Jon Lester Bos 632 438 436.20 0.693 0.690 100.41
Boof Bonser Min 382 249 248.24 0.652 0.650 100.31
Greg Maddux SD 511 360 359.16 0.705 0.703 100.23
Aaron Laffey Cle 316 217 216.67 0.687 0.686 100.15
Manny Parra Mil 499 322 321.73 0.645 0.645 100.08
Gil Meche KC 611 420 419.79 0.687 0.687 100.05
Mike Mussina NYY 613 409 409.01 0.667 0.667 100.00
Jarrod Washburn Sea 512 350 350.13 0.684 0.684 99.96
Chad Billingsley LAD 556 370 370.36 0.665 0.666 99.90
Cliff Lee Cle 670 462 462.50 0.690 0.690 99.89
Zack Greinke KC 587 399 399.62 0.680 0.681 99.84
Ted Lilly ChC 574 412 412.67 0.718 0.719 99.84
Tim Redding Was 572 397 397.98 0.694 0.696 99.75
Wandy Rodriguez Hou 393 266 266.71 0.677 0.679 99.74
Andy Sonnanstine TB 632 432 433.24 0.684 0.686 99.71
Chris Sampson Hou 383 267 267.83 0.697 0.699 99.69
Daniel Cabrera Bal 594 409 410.64 0.689 0.691 99.60
Bronson Arroyo Cin 605 408 409.76 0.674 0.677 99.57
Joe Blanton Oak 440 303 304.31 0.689 0.692 99.57
Jason Bergmann Was 445 310 311.45 0.697 0.700 99.53
Brandon Webb Ari 671 458 460.45 0.683 0.686 99.47
Ervin Santana LAA 605 422 424.34 0.698 0.701 99.45
Zach Duke Pit 669 445 447.62 0.665 0.669 99.42
Kenny Rogers Det 598 400 402.42 0.669 0.673 99.40
Ubaldo Jimenez Col 572 395 397.49 0.691 0.695 99.37
Carlos Silva Sea 564 365 367.36 0.647 0.651 99.36
Nate Robertson Det 563 365 367.59 0.648 0.653 99.30
Jo-Jo Reyes Atl 361 241 242.79 0.668 0.673 99.26
Clayton Kershaw LAD 306 204 205.65 0.667 0.672 99.20
Ricky Nolasco Fla 606 432 435.96 0.713 0.719 99.09
James Shields TB 641 448 452.73 0.699 0.706 98.96
Justin Verlander Det 598 415 419.47 0.694 0.701 98.93
Mike Pelfrey NYM 652 446 450.98 0.684 0.692 98.89
Randy Johnson Ari 531 359 363.22 0.676 0.684 98.84
Kyle Davies KC 361 248 251.20 0.687 0.696 98.73
Edinson Volquez Cin 511 350 354.63 0.685 0.694 98.69
Nick Blackburn Min 658 445 451.38 0.676 0.686 98.59
John Maine NYM 399 286 290.11 0.717 0.727 98.58
Pedro Martinez NYM 337 225 228.38 0.668 0.678 98.52
A.J. Burnett Tor 613 405 411.37 0.661 0.671 98.45
Jorge de la Rosa Col 361 240 243.99 0.665 0.676 98.37
Mark Hendrickson Fla 439 302 307.04 0.688 0.699 98.36
Brian Burres Bal 460 309 314.46 0.672 0.684 98.26
Kevin Millwood Tex 569 360 366.45 0.633 0.644 98.24
Brian Bannister KC 603 408 415.51 0.677 0.689 98.19
Luke Hochevar KC 430 291 297.11 0.677 0.691 97.94
Randy Wolf SD 348 237 242.07 0.681 0.696 97.91
Brandon Backe Hou 512 341 348.41 0.666 0.680 97.87
Barry Zito SF 576 393 401.59 0.682 0.697 97.86
Cha Seung Baek SD 353 238 243.40 0.674 0.690 97.78
Brett Myers Phi 554 379 388.08 0.684 0.701 97.66
Mark Buehrle CWS 699 466 477.66 0.667 0.683 97.56
Odalis Perez Was 507 337 345.85 0.665 0.682 97.44
Andrew Miller Fla 336 216 222.12 0.643 0.661 97.24
Tom Gorzelanny Pit 332 225 231.65 0.678 0.698 97.13
Jonathan Sanchez SF 442 297 306.08 0.672 0.692 97.03
Livan Hernandez Min 525 339 349.78 0.646 0.666 96.92
Garrett Olson Bal 451 295 304.47 0.654 0.675 96.89
Carlos Villanueva Mil 320 220 228.02 0.688 0.713 96.48
Ian Snell Pit 522 335 347.60 0.642 0.666 96.38
Andy Pettitte NYY 641 420 439.26 0.655 0.685 95.62
Darrell Rasner NYY 387 257 269.56 0.664 0.697 95.34
Adam Eaton Phi 356 236 248.23 0.663 0.697 95.07
Fausto Carmona Cle 405 273 288.06 0.674 0.711 94.77

Those are pretty impressive numbers for Daisuke Matsuzaka and Tim Wakefield. Not only were balls in play against them easy to field, the Red Sox did a great job of turning them into outs. For Yankees fans who are concerned about New York signing Andy Pettitte again, better defense would improve Andy’s runs allowed a great deal. CC Sabathia certainly benefitted from good defense in both Cleveland and Milwaukee, so teams looking to sign him should be prepared to send their best fielders out behind the lefty.
Brian Bannister shows how important defense is to a low strikeout pitcher. His expected DER is low, and with the Royals doing a poor job fielding behind him, his actual DER was even lower. Bannister really needs to play for a team of defensive wizards.

November 19, 2008

Probabilistic Model of Range, 2008, Pitchers

The survey of the positions ends with the pitchers. First the teams:

Team Pitchers PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Blue Jays 4215 181 161.32 0.043 0.038 112.20
Tigers 4536 187 171.99 0.041 0.038 108.72
Padres 4419 217 202.55 0.049 0.046 107.13
Royals 4413 170 161.90 0.039 0.037 105.00
Mariners 4512 161 154.23 0.036 0.034 104.39
Twins 4607 190 183.22 0.041 0.040 103.70
Mets 4335 200 192.92 0.046 0.045 103.67
Nationals 4417 193 186.24 0.044 0.042 103.63
Dodgers 4265 217 209.44 0.051 0.049 103.61
Cubs 4156 179 174.74 0.043 0.042 102.44
Phillies 4396 198 193.35 0.045 0.044 102.40
Rockies 4535 204 201.22 0.045 0.044 101.38
Cardinals 4597 205 203.96 0.045 0.044 100.51
Braves 4383 213 211.93 0.049 0.048 100.51
Indians 4513 169 168.95 0.037 0.037 100.03
Astros 4292 159 160.96 0.037 0.038 98.78
Marlins 4338 162 164.14 0.037 0.038 98.70
Red Sox 4232 154 156.88 0.036 0.037 98.17
Diamondbacks 4224 193 196.62 0.046 0.047 98.16
Pirates 4683 211 215.78 0.045 0.046 97.78
White Sox 4409 190 194.51 0.043 0.044 97.68
Rangers 4667 178 184.54 0.038 0.040 96.46
Angels 4374 148 154.21 0.034 0.035 95.97
Reds 4299 174 181.34 0.040 0.042 95.95
Orioles 4540 152 158.73 0.033 0.035 95.76
Yankees 4349 186 194.41 0.043 0.045 95.67
Athletics 4285 142 149.52 0.033 0.035 94.97
Rays 4264 114 124.63 0.027 0.029 91.47
Giants 4232 142 156.07 0.034 0.037 90.98
Brewers 4354 183 205.85 0.042 0.047 88.90

The Blue Jays not only posted an excellent team ERA, but helped themselves defensively as well. The Brewers staff depended more on the fielders behind them. In looking at the individuals, experience appears to be a key to doing well:

Individual Pitchers PMR, 2008, Visit Smooth Distance Model, 2008 data only (500 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Jesse Litsch 569 39 24.20 0.069 0.043 161.16
Greg Maddux 649 59 39.59 0.091 0.061 149.04
Kenny Rogers 598 56 38.39 0.094 0.064 145.87
Livan Hernandez 674 31 22.40 0.046 0.033 138.39
Javier Vazquez 598 29 21.39 0.048 0.036 135.61
Felix Hernandez 577 32 24.02 0.055 0.042 133.25
Jeremy Guthrie 587 23 17.74 0.039 0.030 129.67
Jon Garland 684 31 24.42 0.045 0.036 126.92
Justin Verlander 598 23 18.21 0.038 0.030 126.33
Gil Meche 611 28 22.50 0.046 0.037 124.43
Kyle Kendrick 560 32 26.17 0.057 0.047 122.28
Zack Greinke 587 26 21.34 0.044 0.036 121.86
Bronson Arroyo 605 32 26.95 0.053 0.045 118.72
Cole Hamels 635 35 29.59 0.055 0.047 118.30
Joel Pineiro 505 28 23.71 0.055 0.047 118.07
Tim Wakefield 539 16 13.55 0.030 0.025 118.07
Tim Redding 572 22 18.86 0.038 0.033 116.64
Jason Marquis 554 35 30.06 0.063 0.054 116.42
Ryan Dempster 572 36 31.12 0.063 0.054 115.67
Joe Saunders 623 31 27.14 0.050 0.044 114.24
Glen Perkins 520 23 20.25 0.044 0.039 113.58
Vicente Padilla 524 20 17.70 0.038 0.034 113.02
Roy Oswalt 617 31 27.46 0.050 0.045 112.90
Brandon Webb 671 54 48.10 0.080 0.072 112.27
Aaron Cook 725 44 40.31 0.061 0.056 109.15
Jeff Suppan 589 28 25.91 0.048 0.044 108.06
Scott Olsen 640 20 18.55 0.031 0.029 107.84
Jair Jurrjens 589 37 34.69 0.063 0.059 106.66
Gavin Floyd 625 26 24.44 0.042 0.039 106.39
Zach Duke 669 37 35.21 0.055 0.053 105.09
Oliver Perez 527 17 16.28 0.032 0.031 104.42
Barry Zito 576 20 19.28 0.035 0.033 103.75
Paul Maholm 621 31 29.90 0.050 0.048 103.69
Matt Cain 630 27 26.14 0.043 0.041 103.30
Andy Sonnanstine 632 20 19.44 0.032 0.031 102.89
Hiroki Kuroda 598 39 37.92 0.065 0.063 102.84
Jon Lester 632 21 20.46 0.033 0.032 102.63
Kevin Millwood 569 25 24.56 0.044 0.043 101.80
Greg Smith 578 16 15.75 0.028 0.027 101.56
Brett Myers 554 23 22.85 0.042 0.041 100.64
Ted Lilly 574 15 15.03 0.026 0.026 99.79
Brian Bannister 603 30 30.11 0.050 0.050 99.63
Jamie Moyer 625 20 20.19 0.032 0.032 99.04
John Danks 569 24 24.25 0.042 0.043 98.97
Jarrod Washburn 512 20 20.39 0.039 0.040 98.07
Ubaldo Jimenez 572 35 35.69 0.061 0.062 98.06
Edinson Volquez 511 24 24.49 0.047 0.048 98.02
Mike Pelfrey 652 29 29.63 0.044 0.045 97.88
Kyle Lohse 650 30 30.67 0.046 0.047 97.81
CC Sabathia 687 27 27.67 0.039 0.040 97.59
Paul Byrd 608 17 17.52 0.028 0.029 97.04
Roy Halladay 713 31 32.28 0.043 0.045 96.03
Derek Lowe 644 39 40.83 0.061 0.063 95.52
Chad Billingsley 556 21 22.07 0.038 0.040 95.14
Joe Blanton 652 25 26.28 0.038 0.040 95.13
Odalis Perez 507 23 24.23 0.045 0.048 94.93
Dana Eveland 519 17 17.94 0.033 0.035 94.76
John Lannan 560 29 30.68 0.052 0.055 94.53
Armando Galarraga 525 13 14.04 0.025 0.027 92.57
Mike Mussina 613 28 30.47 0.046 0.050 91.88
Johan Santana 668 30 32.68 0.045 0.049 91.81
Ian Snell 522 21 23.11 0.040 0.044 90.85
Jered Weaver 513 10 11.02 0.019 0.021 90.71
Brandon Backe 512 16 18.01 0.031 0.035 88.85
Todd Wellemeyer 579 15 16.95 0.026 0.029 88.51
Carlos Zambrano 570 23 26.30 0.040 0.046 87.45
Nick Blackburn 658 24 27.47 0.036 0.042 87.36
Mark Buehrle 699 27 31.03 0.039 0.044 87.02
A.J. Burnett 613 24 27.68 0.039 0.045 86.70
James Shields 641 19 21.96 0.030 0.034 86.52
Carlos Silva 564 14 16.40 0.025 0.029 85.36
Dan Haren 610 24 28.16 0.039 0.046 85.21
Matt Garza 560 15 17.82 0.027 0.032 84.18
Edwin Jackson 582 12 14.35 0.021 0.025 83.61
Johnny Cueto 500 18 21.67 0.036 0.043 83.08
Ervin Santana 605 18 22.09 0.030 0.037 81.49
Ricky Nolasco 606 17 21.08 0.028 0.035 80.65
Nate Robertson 563 20 24.99 0.036 0.044 80.03
Randy Wolf 557 25 31.51 0.045 0.057 79.34
Tim Lincecum 562 17 21.44 0.030 0.038 79.28
Braden Looper 653 20 25.71 0.031 0.039 77.80
Brian Moehler 509 12 15.68 0.024 0.031 76.53
Aaron Harang 552 13 17.37 0.024 0.031 74.84
David Bush 567 18 24.87 0.032 0.044 72.37
Randy Johnson 531 12 16.86 0.023 0.032 71.17
Andy Pettitte 641 22 30.94 0.034 0.048 71.11
Cliff Lee 670 17 28.39 0.025 0.042 59.89
Daniel Cabrera 594 11 18.98 0.019 0.032 57.95
Ben Sheets 589 14 24.34 0.024 0.041 57.52

Jesse Litsch is young, but 2-4 are all veterans, and Maddux seems to come out near the top quite often. Mike Mussina, however, did not appear to deserve his gold glove. Remember to take this ranking with a grain of salt, since pitchers are not in the field that often compared to position players, and get many fewer chances to field balls. Luck is a much bigger factor in this group.

November 17, 2008 November 16, 2008

Probabilistic Model of Range, 2008, Catcher

Our survey of the positions continues with catchers. Catchers don’t field very many balls, so take these rankings with a grain of salt. First, the teams:

Team Catchers PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Brewers 4354 71 63.52 0.016 0.015 111.78
Mets 4335 54 48.85 0.012 0.011 110.53
Astros 4292 41 37.24 0.010 0.009 110.11
Pirates 4683 53 48.61 0.011 0.010 109.03
Twins 4607 45 41.93 0.010 0.009 107.32
Yankees 4349 56 52.39 0.013 0.012 106.89
Rangers 4667 49 46.47 0.010 0.010 105.44
Rockies 4535 58 55.02 0.013 0.012 105.42
Orioles 4540 41 39.10 0.009 0.009 104.86
Phillies 4396 58 56.28 0.013 0.013 103.06
Braves 4383 63 61.73 0.014 0.014 102.07
Diamondbacks 4224 50 49.19 0.012 0.012 101.65
Nationals 4417 34 33.64 0.008 0.008 101.08
Padres 4419 64 63.44 0.014 0.014 100.88
Mariners 4512 42 42.22 0.009 0.009 99.47
Dodgers 4265 38 38.45 0.009 0.009 98.82
Blue Jays 4215 57 57.84 0.014 0.014 98.54
Angels 4374 44 44.74 0.010 0.010 98.35
Tigers 4536 58 59.27 0.013 0.013 97.86
White Sox 4409 39 39.88 0.009 0.009 97.80
Giants 4232 48 49.80 0.011 0.012 96.38
Rays 4264 50 51.91 0.012 0.012 96.32
Red Sox 4232 51 53.09 0.012 0.013 96.07
Royals 4413 49 51.24 0.011 0.012 95.62
Marlins 4338 58 60.75 0.013 0.014 95.47
Indians 4513 45 47.90 0.010 0.011 93.94
Cardinals 4597 47 50.66 0.010 0.011 92.78
Athletics 4285 28 31.42 0.007 0.007 89.12
Reds 4299 52 60.30 0.012 0.014 86.23
Cubs 4156 42 51.03 0.010 0.012 82.31

It looks like the Mets trade for Brian Schneider turned out to be a good one from a defensive standpoint. It also looks like rookie of the year Geovany Soto might have some things to learn behind the plate. Let’s look at the individuals:

Individual Catchers PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Wil Nieves 1327 14 9.94 0.011 0.007 140.90
J.R. Towles 1252 8 6.01 0.006 0.005 133.04
Kevin Cash 1131 14 10.77 0.012 0.010 129.95
Ryan Doumit 2933 31 26.57 0.011 0.009 116.66
Carlos Ruiz 2517 42 36.54 0.017 0.015 114.95
Guillermo Quiroz 1176 8 7.01 0.007 0.006 114.11
Chris Iannetta 2633 35 30.83 0.013 0.012 113.52
Humberto Quintero 1321 15 13.41 0.011 0.010 111.87
Victor Martinez 1388 16 14.48 0.012 0.010 110.53
Jason Kendall 3988 67 60.93 0.017 0.015 109.97
Jason LaRue 1288 16 14.58 0.012 0.011 109.72
Joe Mauer 3805 41 37.60 0.011 0.010 109.03
Ramon Castro 1041 14 12.97 0.013 0.012 107.97
Gregg Zaun 1807 30 28.04 0.017 0.016 106.97
Dioner Navarro 2911 38 35.59 0.013 0.012 106.77
Ivan Rodriguez 2947 42 39.65 0.014 0.013 105.93
Brian Schneider 2575 30 28.52 0.012 0.011 105.19
Jeff Mathis 2351 33 31.46 0.014 0.013 104.90
Josh Bard 1253 21 20.28 0.017 0.016 103.56
Ramon Hernandez 3272 33 32.09 0.010 0.010 102.83
Miguel Montero 1191 15 14.77 0.013 0.012 101.53
Chris Snyder 2733 33 32.54 0.012 0.012 101.41
Brad Ausmus 1719 18 17.82 0.010 0.010 101.04
Gerald Laird 2419 24 23.76 0.010 0.010 101.00
Jarrod Saltalamacchia 1470 17 16.85 0.012 0.011 100.90
Jose Molina 2152 23 22.80 0.011 0.011 100.89
Brandon Inge 1541 21 21.16 0.014 0.014 99.24
A.J. Pierzynski 3428 31 31.53 0.009 0.009 98.31
Brian McCann 3470 49 50.81 0.014 0.015 96.44
Miguel Olivo 1509 19 19.85 0.013 0.013 95.70
John Buck 2902 30 31.39 0.010 0.011 95.57
Yorvit Torrealba 1819 21 22.19 0.012 0.012 94.65
Kurt Suzuki 3608 25 26.45 0.007 0.007 94.50
Matt Treanor 1561 23 24.36 0.015 0.016 94.43
Nick Hundley 1482 18 19.13 0.012 0.013 94.11
Bengie Molina 3272 36 39.00 0.011 0.012 92.31
Geovany Soto 3302 34 37.47 0.010 0.011 90.75
Rod Barajas 2262 24 26.60 0.011 0.012 90.24
Russell Martin 3655 31 34.63 0.008 0.009 89.52
Jason Varitek 3002 37 42.26 0.012 0.014 87.56
Jesus Flores 2116 13 15.03 0.006 0.007 86.52
David Ross 1238 17 19.69 0.014 0.016 86.35
Kenji Johjima 2617 20 23.53 0.008 0.009 85.01
Yadier Molina 3185 29 34.24 0.009 0.011 84.70
Mike Napoli 1931 10 12.08 0.005 0.006 82.77
Paul Bako 2272 20 24.25 0.009 0.011 82.48
Kelly Shoppach 2774 25 30.66 0.009 0.011 81.54
John Baker 1477 13 15.96 0.009 0.011 81.46
Chris Coste 1853 15 18.62 0.008 0.010 80.57
Shawn Riggans 1041 11 14.08 0.011 0.014 78.12

Here’s another reason Joe Mauer gets my vote for AL MVP. He’s not only a great offensive catcher, but he fields his position well also. For those teams interested in Jason Varitek, his ranking here is certainly another strike against him.
It’s also interesting to note that Jarrod Saltalamacchia wasn’t terrible behind the plate. I know there’s much more to the position than the ability to field, but in this regard, Saltalamacchia shows a positive behind the plate.

November 14, 2008

Probabilistic Model of Range, 2008, First Basemen

The Probabilistic Model of Range survey continues with first basemen:

Team First Basemen PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Cardinals 4597 363 330.17 0.079 0.072 109.94
Rays 4264 337 309.47 0.079 0.073 108.90
Astros 4292 352 334.44 0.082 0.078 105.25
Angels 4374 348 332.57 0.080 0.076 104.64
Reds 4299 340 326.62 0.079 0.076 104.10
Orioles 4540 330 317.28 0.073 0.070 104.01
Braves 4383 309 301.26 0.070 0.069 102.57
Giants 4232 306 298.46 0.072 0.071 102.53
Mariners 4512 312 305.65 0.069 0.068 102.08
Padres 4419 314 308.13 0.071 0.070 101.90
Athletics 4285 287 282.84 0.067 0.066 101.47
Cubs 4156 339 334.40 0.082 0.080 101.38
Mets 4335 323 319.48 0.075 0.074 101.10
Pirates 4683 293 290.12 0.063 0.062 100.99
White Sox 4409 295 292.85 0.067 0.066 100.73
Red Sox 4232 300 298.07 0.071 0.070 100.65
Blue Jays 4215 346 345.24 0.082 0.082 100.22
Rangers 4667 292 292.72 0.063 0.063 99.75
Dodgers 4265 288 290.00 0.068 0.068 99.31
Rockies 4535 311 318.74 0.069 0.070 97.57
Phillies 4396 335 345.93 0.076 0.079 96.84
Tigers 4536 258 267.90 0.057 0.059 96.31
Brewers 4354 299 311.39 0.069 0.072 96.02
Royals 4413 270 282.47 0.061 0.064 95.58
Nationals 4417 279 292.73 0.063 0.066 95.31
Indians 4513 276 290.25 0.061 0.064 95.09
Yankees 4349 270 286.22 0.062 0.066 94.33
Marlins 4338 296 314.60 0.068 0.073 94.09
Diamondbacks 4224 292 311.45 0.069 0.074 93.76
Twins 4607 262 283.33 0.057 0.061 92.47

As you might expect from the ranking of the top two National League teams, Pujols and Berkman competed with the glove as well as the bat:

Individual First Basemen PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Albert Pujols 3833 310 275.70 0.081 0.072 112.44
Carlos Pena 3428 272 250.39 0.079 0.073 108.63
Rich Aurilia 1398 94 88.21 0.067 0.063 106.57
Lance Berkman 3899 329 309.21 0.084 0.079 106.40
Mark Teixeira 4009 322 302.91 0.080 0.076 106.30
Kevin Millar 3607 264 250.96 0.073 0.070 105.20
Joey Votto 3686 300 285.79 0.081 0.078 104.97
Todd Helton 2272 165 158.79 0.073 0.070 103.91
Casey Kotchman 3659 268 259.14 0.073 0.071 103.42
Paul Konerko 3069 214 207.95 0.070 0.068 102.91
Kevin Youkilis 2835 212 206.26 0.075 0.073 102.78
Adrian Gonzalez 4302 307 300.33 0.071 0.070 102.22
Derrek Lee 3848 322 315.59 0.084 0.082 102.03
Daric Barton 3322 211 207.92 0.064 0.063 101.48
Carlos Delgado 4088 306 305.60 0.075 0.075 100.13
Lyle Overbay 3919 330 329.98 0.084 0.084 100.01
James Loney 4023 267 267.57 0.066 0.067 99.79
Chris Davis 1295 81 81.23 0.063 0.063 99.72
Miguel Cairo 1223 84 84.91 0.069 0.069 98.93
Adam LaRoche 3647 224 226.60 0.061 0.062 98.85
Aaron Boone 1040 61 62.74 0.059 0.060 97.23
Richie Sexson 2103 133 137.24 0.063 0.065 96.91
Ryan Howard 4254 322 336.79 0.076 0.079 95.61
Nick Swisher 1340 81 84.91 0.060 0.063 95.40
Prince Fielder 4133 280 293.92 0.068 0.071 95.26
Chad Tracy 1496 110 115.89 0.074 0.077 94.92
Ross Gload 2727 163 171.75 0.060 0.063 94.91
John Bowker 1607 104 110.60 0.065 0.069 94.03
Miguel Cabrera 3772 220 234.22 0.058 0.062 93.93
Ryan Garko 3323 198 211.16 0.060 0.064 93.77
Conor Jackson 1696 109 117.40 0.064 0.069 92.85
Sean Casey 1042 65 70.15 0.062 0.067 92.65
Justin Morneau 4289 242 261.41 0.056 0.061 92.57
Jason Giambi 2795 164 177.51 0.059 0.064 92.39
Garrett Atkins 1638 101 110.77 0.062 0.068 91.18
Mike Jacobs 2860 175 194.95 0.061 0.068 89.77

Year after year Albert Pujols shows his defensive skill at first base. Lance Berkman is up there, also, making the MVP argument between the two that much closer. Mark Teixeira also offers an excellent glove to go along with his fine offense.
The most surprising ranking to me, however, is Justin Morneau. Justin is still young and shouldn’t have lost a step. He’s someone worth looking at in more detail. Of course, at the very bottom is Mike Jacobs, giving Royals fans another reason to dislike the trade.

November 13, 2008 November 12, 2008 November 12, 2008

Probabilistic Model of Range, 2008, Leftfielders

The survery of range continues with leftfielders. The following table shows how the thirty teams fared at the position:

Team Leftfielders PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Royals 4413 368 353.21 0.083 0.080 104.19
Indians 4513 302 290.89 0.067 0.064 103.82
Rays 4264 344 331.81 0.081 0.078 103.67
Nationals 4417 350 339.72 0.079 0.077 103.03
Mets 4335 308 299.09 0.071 0.069 102.98
Diamondbacks 4224 306 298.79 0.072 0.071 102.41
Braves 4383 279 273.49 0.064 0.062 102.02
Brewers 4354 305 299.07 0.070 0.069 101.98
White Sox 4409 293 287.74 0.066 0.065 101.83
Rangers 4667 323 317.21 0.069 0.068 101.83
Orioles 4540 362 355.59 0.080 0.078 101.80
Athletics 4285 333 328.28 0.078 0.077 101.44
Astros 4292 282 278.71 0.066 0.065 101.18
Padres 4419 310 306.42 0.070 0.069 101.17
Cardinals 4597 312 308.84 0.068 0.067 101.02
Red Sox 4232 292 291.37 0.069 0.069 100.22
Dodgers 4265 286 285.62 0.067 0.067 100.13
Tigers 4536 356 355.77 0.078 0.078 100.06
Giants 4232 308 308.26 0.073 0.073 99.92
Yankees 4349 316 316.76 0.073 0.073 99.76
Angels 4374 285 286.29 0.065 0.065 99.55
Cubs 4156 302 304.23 0.073 0.073 99.27
Blue Jays 4215 270 272.75 0.064 0.065 98.99
Pirates 4683 293 299.34 0.063 0.064 97.88
Reds 4299 280 288.41 0.065 0.067 97.08
Rockies 4535 282 290.95 0.062 0.064 96.92
Marlins 4338 289 299.06 0.067 0.069 96.64
Mariners 4512 324 336.18 0.072 0.075 96.38
Twins 4607 306 327.83 0.066 0.071 93.34
Phillies 4396 260 279.09 0.059 0.063 93.16

As in rightfield, there doesn’t seem to be a huge correlation between doing well in left and winning. The Royals displayed the best defense at the position, while the Phillies came out at the bottom of the pack.
The list of individuals in left shows that very few teams employ a regular at the position:

Individual Leftfielder PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Skip Schumaker 1085 85 73.79 0.078 0.068 115.20
David DeJesus 1522 136 121.91 0.089 0.080 111.56
Brandon Boggs 1818 131 118.10 0.072 0.065 110.92
Matt Joyce 1249 94 84.77 0.075 0.068 110.89
Ben Francisco 2021 150 138.34 0.074 0.068 108.43
Juan Pierre 1816 125 116.83 0.069 0.064 107.00
Willie Harris 1685 145 135.55 0.086 0.080 106.97
Carl Crawford 2715 231 217.97 0.085 0.080 105.98
Conor Jackson 1944 146 139.06 0.075 0.072 104.99
Gregor Blanco 1547 86 82.08 0.056 0.053 104.78
Jay Payton 1293 132 126.31 0.102 0.098 104.51
Luke Scott 2668 200 196.08 0.075 0.073 102.00
Johnny Damon 1998 155 152.00 0.078 0.076 101.97
Ryan Braun 3919 275 270.93 0.070 0.069 101.50
Wily Mo Pena 1260 99 97.68 0.079 0.078 101.35
Carlos Lee 2840 187 185.42 0.066 0.065 100.85
David Dellucci 1164 75 74.64 0.064 0.064 100.48
Adam Dunn 2942 210 209.06 0.071 0.071 100.45
Alfonso Soriano 2653 186 185.23 0.070 0.070 100.42
Fred Lewis 2622 178 177.57 0.068 0.068 100.24
Carlos Quentin 3465 228 228.42 0.066 0.066 99.81
Jack Cust 1753 129 129.74 0.074 0.074 99.43
Emil Brown 1229 89 89.70 0.072 0.073 99.21
Chase Headley 2159 156 157.62 0.072 0.073 98.97
Matt Holliday 3850 240 243.20 0.062 0.063 98.68
Manny Ramirez 2894 190 193.40 0.066 0.067 98.24
Adam Lind 1712 113 115.52 0.066 0.067 97.81
Xavier Nady 1212 87 89.04 0.072 0.073 97.71
Chris Duncan 1012 73 74.80 0.072 0.074 97.59
Raul Ibanez 4203 303 312.07 0.072 0.074 97.09
Garret Anderson 2113 144 148.53 0.068 0.070 96.95
Jose Guillen 1098 83 85.62 0.076 0.078 96.94
Luis Gonzalez 1547 105 109.32 0.068 0.071 96.05
David Murphy 1317 86 89.62 0.065 0.068 95.96
Josh Willingham 2551 166 173.80 0.065 0.068 95.51
Eric Byrnes 1209 76 80.12 0.063 0.066 94.86
Jason Bay 4215 254 268.19 0.060 0.064 94.71
Marcus Thames 1537 120 127.42 0.078 0.083 94.18
Delmon Young 4209 282 301.19 0.067 0.072 93.63
Pat Burrell 3646 202 223.39 0.055 0.061 90.42

Ryan Braun is the first player on the list on the field in left for over 3000 balls in play. Some of this was caused by injuries (Soriano, Matsui), but for the most part, managers mix and match at the position. The move to left was clearly the right one for Braun.
The other rankings of note belong to Manny Ramirez and Jason Bay. Manny actually did better than Jason in 2008. I’m going to need to break down the two by team to see how much the parks might have made a difference. Bay certainly looked better than Manny watching him play for the Red Sox.
All those late inning substitutions Charlie Manuel made for Pat Burrell looked proper, also. Pat ranks as the worst leftfielder in baseball in 2008, so it’s no wonder Charlie wanted a better glove in left when the Phillies had the lead late.

November 10, 2008

Probabilistic Model of Range, 2008, Rightfielders

The Probabilistic Model of Range reports continue with rightfielders. First, the team data:

Team Rightfielders PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Twins 4607 397 374.04 0.086 0.081 106.14
Blue Jays 4215 303 286.97 0.072 0.068 105.58
Giants 4232 392 372.99 0.093 0.088 105.10
Indians 4513 374 358.85 0.083 0.080 104.22
Padres 4419 339 329.60 0.077 0.075 102.85
Phillies 4396 318 310.41 0.072 0.071 102.45
Red Sox 4232 325 318.64 0.077 0.075 102.00
Braves 4383 313 307.02 0.071 0.070 101.95
Rangers 4667 382 375.27 0.082 0.080 101.79
Nationals 4417 353 346.81 0.080 0.079 101.78
Marlins 4338 345 340.25 0.080 0.078 101.40
Cubs 4156 333 329.14 0.080 0.079 101.17
Cardinals 4597 362 360.58 0.079 0.078 100.39
Diamondbacks 4224 269 268.33 0.064 0.064 100.25
Athletics 4285 377 376.50 0.088 0.088 100.13
Mariners 4512 309 310.73 0.068 0.069 99.44
Dodgers 4265 278 279.64 0.065 0.066 99.41
Brewers 4354 316 318.38 0.073 0.073 99.25
Pirates 4683 386 389.32 0.082 0.083 99.15
Royals 4413 334 336.94 0.076 0.076 99.13
Orioles 4540 338 341.58 0.074 0.075 98.95
Mets 4335 356 360.14 0.082 0.083 98.85
Astros 4292 357 365.06 0.083 0.085 97.79
Rays 4264 345 354.99 0.081 0.083 97.19
Reds 4299 327 338.05 0.076 0.079 96.73
Tigers 4536 301 311.48 0.066 0.069 96.64
White Sox 4409 296 308.31 0.067 0.070 96.01
Angels 4374 308 322.64 0.070 0.074 95.46
Yankees 4349 301 316.77 0.069 0.073 95.02
Rockies 4535 249 273.59 0.055 0.060 91.01

It seems rightfielder defense didn’t have that much influence on playoff teams. Five of the eight post-season teams finished in the bottom half of the majors. Here’s a look at the individuals:

Individual Rightfielder PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Alex Rios 2373 170 156.05 0.072 0.066 108.94
Denard Span 2099 192 176.27 0.091 0.084 108.92
Franklin Gutierrez 2400 224 207.25 0.093 0.086 108.08
Jayson Werth 1964 143 133.49 0.073 0.068 107.12
Randy Winn 3247 309 291.22 0.095 0.090 106.10
Matt Kemp 1391 97 91.48 0.070 0.066 106.04
Endy Chavez 1176 109 103.84 0.093 0.088 104.97
Austin Kearns 2268 187 179.28 0.082 0.079 104.30
Michael Cuddyer 1640 123 118.33 0.075 0.072 103.95
Justin Upton 2531 175 168.66 0.069 0.067 103.76
Kosuke Fukudome 3164 246 240.12 0.078 0.076 102.45
Jeff Francoeur 4016 284 278.05 0.071 0.069 102.14
David Murphy 1279 107 104.84 0.084 0.082 102.06
Ryan Sweeney 1462 136 133.41 0.093 0.091 101.94
Ichiro Suzuki 2491 176 172.83 0.071 0.069 101.83
Mark Teahen 2292 185 181.68 0.081 0.079 101.82
Brian Giles 3845 276 271.51 0.072 0.071 101.65
Jeremy Hermida 3310 266 263.10 0.080 0.079 101.10
J.D. Drew 2658 184 183.15 0.069 0.069 100.47
Gabe Gross 2225 186 185.51 0.084 0.083 100.26
Nick Markakis 4353 329 328.98 0.076 0.076 100.00
Corey Hart 4134 304 305.57 0.074 0.074 99.49
Brad Wilkerson 1428 95 95.58 0.067 0.067 99.39
Ryan Church 2158 180 181.26 0.083 0.084 99.31
Geoff Jenkins 1974 141 142.41 0.071 0.072 99.01
Elijah Dukes 1840 137 138.55 0.074 0.075 98.88
Shin-Soo Choo 1255 89 90.51 0.071 0.072 98.33
Hunter Pence 4112 341 349.04 0.083 0.085 97.70
Emil Brown 1264 112 114.89 0.089 0.091 97.49
Jay Bruce 1777 143 147.07 0.080 0.083 97.23
Jose Guillen 1673 121 124.68 0.072 0.075 97.05
Andre Ethier 2620 171 176.94 0.065 0.068 96.64
Ryan Ludwick 3037 232 240.07 0.076 0.079 96.64
Vladimir Guerrero 2541 180 186.37 0.071 0.073 96.58
Xavier Nady 2497 199 207.14 0.080 0.083 96.07
Magglio Ordonez 3588 220 229.25 0.061 0.064 95.96
Jermaine Dye 3981 266 277.60 0.067 0.070 95.82
Bobby Abreu 3933 271 284.58 0.069 0.072 95.23
Eric Hinske 1001 88 92.73 0.088 0.093 94.90
Ken Griffey Jr. 2257 157 166.16 0.070 0.074 94.48
Gary Matthews Jr. 1013 77 82.08 0.076 0.081 93.81
Brad Hawpe 3645 188 213.67 0.052 0.059 87.99

Denard Span not only improved the Twins leadoff slot, he also did a great job tracking down balls in rightfield. While I’m not surprised to see older players like Ken Griffey and Bobby Abreu near the bottom of the list, I didn’t expect to see Gary Matthews, Jr. there.
Ichiro Suzuki also adds some interest. He came out near the top in center, but in the middle in right. It’s a bit of a mystery why he does better in center than he does in right.

November 9, 2008

Probabilistic Model of Range, 2008, Third Basemen

The Blue Jays and Cardinals made a challenge trade at the start of the season, swapping Scott Rolen and Troy Glaus. Defensively, at least, the Blue Jays came out on top. Here are the Probabilistic Model of Range team rankings for third base:

Team Third Basemen PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Blue Jays 4215 415 392.25 0.098 0.093 105.80
Mariners 4512 403 384.91 0.089 0.085 104.70
Red Sox 4232 440 423.21 0.104 0.100 103.97
Dodgers 4265 427 411.45 0.100 0.096 103.78
Angels 4374 391 377.04 0.089 0.086 103.70
Braves 4383 404 390.88 0.092 0.089 103.36
Rays 4264 420 406.66 0.098 0.095 103.28
Tigers 4536 471 458.72 0.104 0.101 102.68
Brewers 4354 396 387.21 0.091 0.089 102.27
White Sox 4409 463 455.46 0.105 0.103 101.66
Padres 4419 382 376.01 0.086 0.085 101.59
Astros 4292 408 402.20 0.095 0.094 101.44
Athletics 4285 385 380.25 0.090 0.089 101.25
Pirates 4683 445 442.19 0.095 0.094 100.64
Rockies 4535 412 410.31 0.091 0.090 100.41
Nationals 4417 416 415.43 0.094 0.094 100.14
Yankees 4349 379 378.81 0.087 0.087 100.05
Cubs 4156 341 342.34 0.082 0.082 99.61
Mets 4335 374 376.09 0.086 0.087 99.44
Indians 4513 419 423.48 0.093 0.094 98.94
Marlins 4338 370 375.82 0.085 0.087 98.45
Royals 4413 375 386.63 0.085 0.088 96.99
Phillies 4396 411 425.13 0.093 0.097 96.68
Rangers 4667 372 386.02 0.080 0.083 96.37
Diamondbacks 4224 350 363.76 0.083 0.086 96.22
Twins 4607 382 397.09 0.083 0.086 96.20
Cardinals 4597 416 432.51 0.090 0.094 96.18
Giants 4232 338 356.28 0.080 0.084 94.87
Reds 4299 337 356.45 0.078 0.083 94.54
Orioles 4540 421 446.86 0.093 0.098 94.21

I’m impressed that the Braves rank so high. Chipper Jones isn’t known for his defense at third, but he played well this season.

Individual Third Baseman PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Chone Figgins 2787 249 230.03 0.089 0.083 108.25
Andy Marte 1849 185 173.47 0.100 0.094 106.64
Evan Longoria 3059 304 286.97 0.099 0.094 105.94
Ian Stewart 1651 160 151.25 0.097 0.092 105.78
Adrian Beltre 3804 338 321.08 0.089 0.084 105.27
Carlos Guillen 2396 246 233.91 0.103 0.098 105.17
Jack Hannahan 2882 267 254.14 0.093 0.088 105.06
Mike Lowell 2717 279 266.51 0.103 0.098 104.69
Geoff Blum 1773 179 171.00 0.101 0.096 104.68
Blake DeWitt 2152 233 223.28 0.108 0.104 104.35
Joe Crede 2492 251 242.47 0.101 0.097 103.52
Bill Hall 2709 238 229.92 0.088 0.085 103.51
Chipper Jones 2981 274 265.13 0.092 0.089 103.34
Scott Rolen 2935 274 267.64 0.093 0.091 102.37
Kevin Kouzmanoff 4179 368 361.20 0.088 0.086 101.88
Alex Rodriguez 3377 297 291.79 0.088 0.086 101.79
Jose Bautista 2478 243 240.95 0.098 0.097 100.85
Greg Dobbs 1000 92 91.52 0.092 0.092 100.53
Ryan Zimmerman 2786 275 273.75 0.099 0.098 100.46
David Wright 4234 367 365.59 0.087 0.086 100.39
Willy Aybar 1048 108 107.77 0.103 0.103 100.21
Andy LaRoche 1573 152 151.71 0.097 0.096 100.19
Juan Uribe 1424 156 157.08 0.110 0.110 99.31
Aramis Ramirez 3664 290 294.47 0.079 0.080 98.48
Edwin Encarnacion 3673 288 295.33 0.078 0.080 97.52
Mike Lamb 1508 117 120.22 0.078 0.080 97.32
Brian Buscher 1564 141 145.30 0.090 0.093 97.04
Jose Castillo 2560 214 220.73 0.084 0.086 96.95
Garrett Atkins 2528 221 228.04 0.087 0.090 96.91
Mark Reynolds 3759 304 315.66 0.081 0.084 96.31
Jorge Cantu 3264 271 281.48 0.083 0.086 96.28
Alex Gordon 3583 316 329.28 0.088 0.092 95.97
Pedro Feliz 2972 280 292.73 0.094 0.098 95.65
Casey Blake 3318 288 301.47 0.087 0.091 95.53
Ty Wigginton 2013 175 183.48 0.087 0.091 95.38
Troy Glaus 3908 351 368.31 0.090 0.094 95.30
Melvin Mora 3362 320 342.26 0.095 0.102 93.50
Ramon Vazquez 1712 138 149.87 0.081 0.088 92.08
Rich Aurilia 1271 93 106.18 0.073 0.084 87.59

Adrian Beltre comes through here as an interesting player. With the run up in salaries the last few seasons, his $12 million contract for 2009 is pretty good. It’s the same amount Mike Lowell will make next season. The two are also very close in terms of win shares. If a team is looking to upgrade their defense at third base, Beltre is a great pickup. The Mariners may be looking to move his contract. If the surgery he underwent in September helps with his hitting, he could be a very good pickup.
Evan Longoria certainly was a big part of the Rays defensive improvement. Unexpected major leaguers Blake DeWitt and Jack Hannahan also provided much needed defense. In addition, Andy Marte hasn’t hit but he did field the position well in limited playing time.
At the other end of the spectrum, Casey Blake appears to be as overrated defensively as offensively. Alex Gordon and Mark Reynolds look like they won’t have long careers at the position, given their poor play at a young age.

November 9, 2008

Watching Uggla

Mike Emeigh took me up on my offer to watch the best and worst plays of a second baseman. I sent Mike the highest probability plays Dan Uggla didn’t make, and the lowest probability plays Uggla did turn into outs. Here’s his report:

Of Uggla’s eight low-probability plays made, four of them were plays on which the Marlins had an infield shift on – three by Ryan Howard, one by Carlos Delgado – and in each case the ball was hit directly to where Uggla was playing; it’s very likely that any 2B would have made those plays in that position, and I don’t know thow much credit you want to give Uggla for being there. Two more plays – the 8/15 play against Alfonso Soriano and the 7/10 play against James Loney – also appear to be primarily due to positioning. On the former, Uggla was playing Soriano fairly far up the middle and had a good angle on his popup; on the latter, Uggla was pulled over fairly close to 1B. The other two plays were good, far-ranging plays – Uggla going far to his left to throw out Brian Schneider on 5/26, and ranging well to the left side of 2B in shallow center to grab a Mark Reynolds flare on 5/20 – although on the latter positioning also played a role, as Uggla was playing Reynolds up the middle and the CF was playing fairly deep. It was a good play, but one that a good CF or SS might have been able to make, also.
The six high-probability plays that Uggla should have made but didn’t:

  • 6/17: routing GB by Ichiro, just booted it
  • 8/6: hard-hit “at ’em” GB by Jimmy Rollins, basically one of those you either catch or don’t catch
  • 5/30: GB by Pedro Feliz that took a bad hop as it got to Uggla; he barehanded it across his body, which threw off his timing
  • 4/18: GB by Ryan Zimmerman toward the middle; Uggla made the play but didn’t get enough on the throw, which Mike Jacobs should have scooped anyway
  • 9/21: With Jamie Moyer on 1B, Jimmy Rollins hit a slow grounder to the right side. Uggla stopped to avoid a collision with Moyer, which made him have to hurry the play when he did get to the ball. Had he kept coming Moyer would likely have collided with him, which would have been interference on Moyer
  • 7/28: Endy Chavez hit a GB which took a funky hop as it got to Uggla, who booted it

Mike brings up something I’ve discussed before. Range is probably a poor word for what we’re studying here. Range isn’t just the ability to move a long distance to field a ball. It also includes the ability to position yourself (or have someone position you) so you don’t need to move very far. Uggla (and Utley) put themselves into position to field low probability balls without having too many high probability outs sneak through their vacated normal positions. Someday, we’ll measure range directly.

November 8, 2008

Probabilistic Model of Range, Centerfielders, 2008

The third position presented in this year’s Probabilistic Model of Range study belongs to centerfielders. First, the overall team numbers:

Team Centerfielders PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Mets 4335 435 422.51 0.100 0.097 102.96
Rays 4264 451 438.07 0.106 0.103 102.95
Phillies 4396 389 378.54 0.088 0.086 102.76
Twins 4607 488 475.27 0.106 0.103 102.68
Athletics 4285 444 433.07 0.104 0.101 102.52
Reds 4299 413 404.02 0.096 0.094 102.22
Angels 4374 429 421.94 0.098 0.096 101.67
Brewers 4354 406 400.20 0.093 0.092 101.45
Astros 4292 427 420.91 0.099 0.098 101.45
Mariners 4512 435 429.86 0.096 0.095 101.19
Rockies 4535 405 400.30 0.089 0.088 101.17
Yankees 4349 407 402.92 0.094 0.093 101.01
Diamondbacks 4224 402 398.46 0.095 0.094 100.89
Dodgers 4265 377 374.62 0.088 0.088 100.64
Red Sox 4232 406 404.43 0.096 0.096 100.39
Marlins 4338 438 436.46 0.101 0.101 100.35
Braves 4383 360 361.20 0.082 0.082 99.67
Pirates 4683 433 434.85 0.092 0.093 99.58
Indians 4513 412 414.22 0.091 0.092 99.46
Orioles 4540 440 442.64 0.097 0.097 99.40
Padres 4419 453 456.46 0.103 0.103 99.24
Rangers 4667 451 456.50 0.097 0.098 98.79
Cubs 4156 391 396.42 0.094 0.095 98.63
Giants 4232 454 460.66 0.107 0.109 98.55
White Sox 4409 362 369.04 0.082 0.084 98.09
Blue Jays 4215 381 389.50 0.090 0.092 97.82
Tigers 4536 450 460.98 0.099 0.102 97.62
Nationals 4417 426 439.80 0.096 0.100 96.86
Royals 4413 417 436.29 0.094 0.099 95.58
Cardinals 4597 388 409.47 0.084 0.089 94.76

It was a good year for the Mets and the Rays. I find it interesting that the Rangers rank so low, as a number of people noted Josh Hamilton’s defense this season. The next table will show where he ranks as an individual:

Individual Centerfielders PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Rajai Davis 1483 153 142.55 0.103 0.096 107.33
Ichiro Suzuki 1887 195 186.20 0.103 0.099 104.72
B.J. Upton 3642 378 362.20 0.104 0.099 104.36
Carlos Gonzalez 1585 176 169.00 0.111 0.107 104.14
Carlos Gomez 3988 437 422.56 0.110 0.106 103.42
Carlos Beltran 4171 418 407.47 0.100 0.098 102.58
Marlon Byrd 1372 149 145.28 0.109 0.106 102.56
Gregor Blanco 1495 128 124.87 0.086 0.084 102.51
Brian Anderson 1295 102 99.83 0.079 0.077 102.17
Willy Taveras 3124 282 276.52 0.090 0.089 101.98
Jacoby Ellsbury 1660 171 168.01 0.103 0.101 101.78
Torii Hunter 3587 350 344.29 0.098 0.096 101.66
Chris Young 4091 393 387.93 0.096 0.095 101.31
Andruw Jones 1481 133 131.63 0.090 0.089 101.04
Shane Victorino 3619 314 310.92 0.087 0.086 100.99
Michael Bourn 3051 291 289.00 0.095 0.095 100.69
Melky Cabrera 2919 272 270.56 0.093 0.093 100.53
Corey Patterson 2388 242 241.55 0.101 0.101 100.19
Alfredo Amezaga 1451 146 145.75 0.101 0.100 100.17
Grady Sizemore 4199 382 382.73 0.091 0.091 99.81
Adam Jones 3487 337 337.64 0.097 0.097 99.81
Matt Kemp 2425 209 209.73 0.086 0.086 99.65
Coco Crisp 2534 234 235.17 0.092 0.093 99.50
Jeremy Reed 1439 132 132.92 0.092 0.092 99.31
Cody Ross 2561 254 255.96 0.099 0.100 99.24
Aaron Rowand 3750 411 414.28 0.110 0.110 99.21
Mike Cameron 3174 293 295.47 0.092 0.093 99.16
Jim Edmonds 2420 242 244.43 0.100 0.101 99.00
Alex Rios 1531 156 158.34 0.102 0.103 98.52
Jody Gerut 1816 189 191.84 0.104 0.106 98.52
Mark Kotsay 2145 173 176.54 0.081 0.082 98.00
Reed Johnson 1618 144 147.07 0.089 0.091 97.91
Nate McLouth 4228 380 388.88 0.090 0.092 97.72
Scott Hairston 1152 114 116.69 0.099 0.101 97.69
Josh Hamilton 2977 268 274.44 0.090 0.092 97.65
Vernon Wells 2582 217 222.72 0.084 0.086 97.43
Joey Gathright 2242 197 202.50 0.088 0.090 97.28
Curtis Granderson 3740 366 379.16 0.098 0.101 96.53
Nick Swisher 1650 138 144.00 0.084 0.087 95.84
Lastings Milledge 3632 348 365.21 0.096 0.101 95.29
Rick Ankiel 2433 213 224.60 0.088 0.092 94.83
Skip Schumaker 1760 136 143.45 0.077 0.082 94.81
Ryan Sweeney 1053 95 102.85 0.090 0.098 92.37
David DeJesus 1524 151 163.83 0.099 0.108 92.17

It was a very good year to be a centerfielder named Carlos. B.J. Upton, however, gets the nod as the best everyday DF. Looking at individuals, it becomes apparent why the Cardinals rated so poorly at the position. Skip Shumaker and Rick Ankiel were equally below average.
As for Josh Hamilton, he ranks 35th out of 44 fielders in the study. He’s going to be worth exploring in more detail, since I suspect people who watch him give him better marks.

November 8, 2008

Ball Hogs

Before I get to the centerfielders, a question arises sometimes that I’d like to address. I’m sometimes asked when a fielder does well, especially an outfielder on fly balls, what about ball hogs? So for outfielders, I’d like to take a look at where balls get hogged, and who does the hogging.
The first graph shows the percentage of plays made on each Probabilistic Model of Range vector, each vector representing about five degrees. Data is all outs made by major league outfielders in 2008. Leftfield is represented by low number vectors, rightfield by high number vectors. Straight-away centerfield is vector 36 (click for a larger image).

BallHogPercentage.jpg

There are two things to notice from this graph. The first is that there are very few vectors in which ball hogging might occur. There are only six, in fact. Second, centerfielder hog more balls from leftfielder than they do from rightfielders. This makes some sense, since most hitters are right-handed, meaning centerfielders are going to be shaded toward left most of the time.
The other thing I want to point out is that balls are hogged in places where fewer outs get recorded (click for a larger image):

PlaysMadeOF.jpg

So, it’s tough for an outfielder to get a huge boost by ball hogging. They don’t stray that far into another’s territory, and when they do there are fewer outs to be gathered in anyway.
This also gives us a tool to use to look at individual teams if a question of ball hogging comes up.

November 8, 2008 November 6, 2008

Probabilistic Model of Range, 2008, Second Basemen

The following table shows how team second basemen ranked according to the Probabilistic Model of Range:

Team Second Basemen PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Marlins 4338 527 500.98 0.121 0.115 105.19
Phillies 4396 528 504.35 0.120 0.115 104.69
Reds 4299 498 478.19 0.116 0.111 104.14
Diamondbacks 4224 561 539.98 0.133 0.128 103.89
Cubs 4156 500 487.52 0.120 0.117 102.56
Rockies 4535 564 552.06 0.124 0.122 102.16
Tigers 4536 505 495.02 0.111 0.109 102.02
Angels 4374 545 535.72 0.125 0.122 101.73
Indians 4513 554 545.22 0.123 0.121 101.61
Twins 4607 513 505.30 0.111 0.110 101.52
Athletics 4285 518 510.99 0.121 0.119 101.37
Blue Jays 4215 532 525.31 0.126 0.125 101.27
Brewers 4354 508 503.13 0.117 0.116 100.97
White Sox 4409 535 533.38 0.121 0.121 100.30
Orioles 4540 498 498.38 0.110 0.110 99.92
Cardinals 4597 517 517.91 0.112 0.113 99.82
Yankees 4349 556 557.46 0.128 0.128 99.74
Red Sox 4232 505 508.07 0.119 0.120 99.40
Astros 4292 464 467.09 0.108 0.109 99.34
Mariners 4512 602 608.69 0.133 0.135 98.90
Rangers 4667 539 546.88 0.115 0.117 98.56
Royals 4413 547 555.11 0.124 0.126 98.54
Nationals 4417 464 471.01 0.105 0.107 98.51
Braves 4383 526 534.13 0.120 0.122 98.48
Pirates 4683 466 478.32 0.100 0.102 97.43
Mets 4335 476 492.58 0.110 0.114 96.63
Giants 4232 417 432.81 0.099 0.102 96.35
Rays 4264 472 490.56 0.111 0.115 96.22
Padres 4419 475 499.74 0.107 0.113 95.05
Dodgers 4265 484 514.65 0.113 0.121 94.04

The Marlins number one at second base? That certainly flies in the face of Dan Uggla’s performance in the All-Star Game. It’s not that surprising, however, to see the Dodgers with the aging Jeff Kent coming in last. On to the individual players:

Individual Second Baseman PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Adam Kennedy 2036 247 226.55 0.121 0.111 109.03
Mike Fontenot 1448 175 160.82 0.121 0.111 108.82
Emilio Bonifacio 1008 100 93.17 0.099 0.092 107.33
Chase Utley 4231 513 485.09 0.121 0.115 105.75
Marco Scutaro 1077 144 136.95 0.134 0.127 105.15
Placido Polanco 3806 424 405.94 0.111 0.107 104.45
Dan Uggla 3841 465 445.31 0.121 0.116 104.42
Howie Kendrick 2341 308 295.94 0.132 0.126 104.07
Joe Inglett 1554 205 197.44 0.132 0.127 103.83
Asdrubal Cabrera 2446 316 304.98 0.129 0.125 103.61
Juan Uribe 1112 138 133.57 0.124 0.120 103.32
Brandon Phillips 3704 429 416.27 0.116 0.112 103.06
Clint Barmes 1519 183 177.61 0.120 0.117 103.03
Mark Ellis 3006 373 365.23 0.124 0.122 102.13
Alexi Casilla 2611 288 282.01 0.110 0.108 102.12
Orlando Hudson 2668 346 339.70 0.130 0.127 101.86
Kaz Matsui 2485 267 265.25 0.107 0.107 100.66
Rickie Weeks 3150 355 353.07 0.113 0.112 100.55
Dustin Pedroia 4003 479 477.12 0.120 0.119 100.39
Brian Roberts 4195 471 469.83 0.112 0.112 100.25
Robinson Cano 4152 531 530.64 0.128 0.128 100.07
Sean Rodriguez 1229 149 148.91 0.121 0.121 100.06
Mark Loretta 1110 129 128.96 0.116 0.116 100.03
Jose Lopez 3861 531 533.54 0.138 0.138 99.52
Alexei Ramirez 3081 371 373.04 0.120 0.121 99.45
Luis Castillo 2054 219 220.31 0.107 0.107 99.41
Mark Grudzielanek 2175 280 282.08 0.129 0.130 99.26
Tadahito Iguchi 1962 217 218.94 0.111 0.112 99.12
Jamey Carroll 1800 206 207.94 0.114 0.116 99.07
Ian Kinsler 3462 413 417.34 0.119 0.121 98.96
Kelly Johnson 3631 441 448.84 0.121 0.124 98.25
Mark DeRosa 1930 232 236.45 0.120 0.123 98.12
Freddy Sanchez 3688 368 378.01 0.100 0.102 97.35
Eugenio Velez 1355 128 133.20 0.094 0.098 96.09
Jeff Baker 1174 139 144.85 0.118 0.123 95.96
Felipe Lopez 2435 266 279.15 0.109 0.115 95.29
Aaron Hill 1375 164 172.51 0.119 0.125 95.07
Akinori Iwamura 3916 435 457.88 0.111 0.117 95.00
Aaron Miles 1551 171 182.78 0.110 0.118 93.55
Alberto Callaspo 1128 128 137.62 0.113 0.122 93.01
Ray Durham 2160 212 228.31 0.098 0.106 92.86
Edgar Gonzalez 1701 191 205.90 0.112 0.121 92.76
Brendan Harris 1016 101 109.08 0.099 0.107 92.59
Damion Easley 1607 170 186.57 0.106 0.116 91.12
Jeff Kent 2630 290 318.37 0.110 0.121 91.09

One thing I need to look at more closely is why Dan Uggla does so well. In the previous post on shortstops, a couple of commenters wanted more proof that this system actually works. I was a bit suprised by Akinori Iwamura rating so low, so I thought I would look at his poorest plays to see if they made sense. Of his four worst plays, all with a probablility of .889 or higher of being turned, two were errors hit right at him. One was a grounder to his right when he was playing too far left (poor positioning) and one was just bad judgement on a double play ball.
To compare, I looked at Utley’s best play, since he was the best regular at the position. All three of his best plays were balls to the right of first base that got by Howard off the bats of left handers. In each case, Utley ranged into the outfield to field the ball and throw out the batter at first, twice I believe to the pitcher covering. He made those plays because Howard couldn’t, but he was positioned so well he was in the right place to cover for Ryan.
The other thing I noticed is that toughest plays Utley made were much tougher than the best plays Iwamura executed. At the other end, easiest balls in play that Iwamura failed to turn into outs were much easier than Utley’s worse plays.
If anyone would like to review video on MLB.com for a particular player, I’ll be happy to send you the dates and innings of their best and worst plays.
In case you want to check my work, Iwamura’s worst plays were on 9/7, 3rd inning, 8/20, 9th inning, 4/25, 9th inning, 7/30, 5th inning. Utley’s best plays were on 7/23, 1st inning, 7/1, 1st inning and 8/3, 3rd inning.

November 6, 2008 November 5, 2008

Probabilistic Model of Range, 2008, Shortstops

The first position to examine is the most important of the fielders working behind the pitcher, the shortstop. As a reference, the first table looks at the position on a team-wide basis:

Team Shortstop PMR, 2008, Visit Smooth Distance Model, 2008 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Brewers 4354 551 526.00 0.127 0.121 104.75
Giants 4232 492 469.81 0.116 0.111 104.72
Marlins 4338 517 501.00 0.119 0.115 103.19
Angels 4374 524 510.64 0.120 0.117 102.62
Cardinals 4597 580 566.37 0.126 0.123 102.41
Red Sox 4232 480 472.55 0.113 0.112 101.58
Phillies 4396 557 551.85 0.127 0.126 100.93
Braves 4383 566 561.40 0.129 0.128 100.82
Diamondbacks 4224 469 465.74 0.111 0.110 100.70
Cubs 4156 498 495.33 0.120 0.119 100.54
Astros 4292 500 497.32 0.116 0.116 100.54
Athletics 4285 477 474.54 0.111 0.111 100.52
Rangers 4667 538 536.31 0.115 0.115 100.31
Dodgers 4265 546 544.65 0.128 0.128 100.25
Indians 4513 542 540.73 0.120 0.120 100.23
White Sox 4409 548 546.97 0.124 0.124 100.19
Royals 4413 508 507.30 0.115 0.115 100.14
Rays 4264 490 490.56 0.115 0.115 99.89
Orioles 4540 537 539.06 0.118 0.119 99.62
Rockies 4535 587 589.61 0.129 0.130 99.56
Pirates 4683 577 580.37 0.123 0.124 99.42
Blue Jays 4215 476 479.71 0.113 0.114 99.23
Twins 4607 578 584.70 0.125 0.127 98.85
Yankees 4349 491 499.00 0.113 0.115 98.40
Nationals 4417 526 538.02 0.119 0.122 97.76
Mariners 4512 480 493.64 0.106 0.109 97.24
Padres 4419 520 536.39 0.118 0.121 96.94
Reds 4299 468 485.83 0.109 0.113 96.33
Tigers 4536 519 544.40 0.114 0.120 95.33
Mets 4335 498 524.64 0.115 0.121 94.92

Notice the Mets are last. While recent articles mention Jeter as the worst fielder in the majors, in 2008 he wasn’t the worst shortstop in New York:

Individual Shortstop PMR, 2008, Visit Smooth Distance Model, 2008 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Marco Scutaro 1352 173 157.04 0.128 0.116 110.16
Omar Vizquel 1863 210 193.60 0.113 0.104 108.47
Mike Aviles 2277 271 252.42 0.119 0.111 107.36
Maicer Izturis 1307 151 144.80 0.116 0.111 104.28
Jed Lowrie 1142 123 118.01 0.108 0.103 104.23
J.J. Hardy 3804 477 460.72 0.125 0.121 103.53
Erick Aybar 2437 305 295.72 0.125 0.121 103.14
Alex Cora 1137 140 135.75 0.123 0.119 103.13
Cesar Izturis 3136 408 396.19 0.130 0.126 102.98
Jack Wilson 2231 285 276.88 0.128 0.124 102.93
Bobby Crosby 3740 423 411.71 0.113 0.110 102.74
Jason Bartlett 3208 380 372.71 0.118 0.116 101.96
Hanley Ramirez 3986 472 462.98 0.118 0.116 101.95
Juan Castro 1331 153 150.32 0.115 0.113 101.78
Jimmy Rollins 3537 451 443.43 0.128 0.125 101.71
Luis Rodriguez 1191 143 140.93 0.120 0.118 101.47
Yunel Escobar 3344 440 434.04 0.132 0.130 101.37
Nick Punto 1646 227 224.05 0.138 0.136 101.32
Orlando Cabrera 4218 527 521.06 0.125 0.124 101.14
Adam Everett 1183 156 154.33 0.132 0.130 101.08
Miguel Tejada 4062 472 469.63 0.116 0.116 100.50
Jhonny Peralta 3963 469 467.52 0.118 0.118 100.32
Michael Young 4165 489 487.98 0.117 0.117 100.21
Ryan Theriot 3615 425 424.27 0.118 0.117 100.17
Julio Lugo 1947 216 217.95 0.111 0.112 99.11
Angel Berroa 1730 225 227.09 0.130 0.131 99.08
Derek Jeter 3815 429 433.24 0.112 0.114 99.02
Stephen Drew 3820 422 429.34 0.110 0.112 98.29
Cristian Guzman 3640 441 449.15 0.121 0.123 98.19
John McDonald 1387 150 154.82 0.108 0.112 96.89
Yuniesky Betancourt 4173 446 460.45 0.107 0.110 96.86
Troy Tulowitzki 2730 354 365.56 0.130 0.134 96.84
Edgar Renteria 3696 428 449.40 0.116 0.122 95.24
Jose Reyes 4196 480 504.15 0.114 0.120 95.21
Khalil Greene 2841 327 345.54 0.115 0.122 94.64
Tony F Pena 1808 199 211.52 0.110 0.117 94.08
Brendan Harris 1480 159 170.68 0.107 0.115 93.16
Jeff Keppinger 2636 274 296.50 0.104 0.112 92.41
David Eckstein 1445 149 163.53 0.103 0.113 91.11

Jose Reyes converted 24 fewer balls into outs than expected while Jeter was just down four. It was actually one of Derek’s better years.
Omar Vizquel remains impressive at an advanced age. He didn’t play a whole season, so he didn’t get a chance to wear down, but if any team is looking for a great late inning defensive replacement, Omar is it.
Mike Aviles came up as a great find for the Royals in terms of his batting, but he also performed well with the glove.
Troy Tulowitzki went from first to almost worst in 2008. His injuries seemed to limit his range.
Jimmy Rollins won the Gold Glove today, but J.J. Hardy deserved it based on this data.
Feel free to comment and criticize.

November 4, 2008

Probabilistic Model of Range, 2008

Baseball Info Solutions sent me their fielding data, and that means it’s time to start presenting the 2008 Probabilistic Model of Range. If you’re new to this, you can find explanations in this archive. Basically, for each fieldable (non inside the park home runs) ball put in play, six parameters are used to determine how difficult it was to field the ball. A probability of turning the ball into an out is calculated, and those probabilities are summed. That gives us expected batted balls turned into outs. We turn that into a predicted DER (defensive efficiency record), compare that to the actual DER and calculate a ranking.
The model is based primarily on visiting player data, smoothed, using distance on fly balls and a hard hit indicator on ground balls. Only 2008 data was used to construct the model.
Note that a team can post a poor DER during the season, but do well in this model if the balls put into play were extremely difficult to field. This helps the Braves rank second.

Probabilistic Model of Range, 2008 Data, Teams, Visit Smooth Distance Model, Ranked by Difference
Team In Play Actual Outs Predicted Outs DER Predicted DER Index
Blue Jays 4215 2961 2896.74 0.702 0.687 102.22
Braves 4383 3033 2977.44 0.692 0.679 101.87
Rays 4264 3023 2979.66 0.709 0.699 101.45
Athletics 4285 2991 2950.73 0.698 0.689 101.36
Red Sox 4232 2953 2913.30 0.698 0.688 101.36
Astros 4292 2990 2952.74 0.697 0.688 101.26
Angels 4374 3022 2985.77 0.691 0.683 101.21
Brewers 4354 3036 3000.17 0.697 0.689 101.19
Cardinals 4597 3190 3163.77 0.694 0.688 100.83
Dodgers 4265 2941 2919.81 0.690 0.685 100.73
Cubs 4156 2925 2906.58 0.704 0.699 100.63
Twins 4607 3161 3144.82 0.686 0.683 100.51
Mariners 4512 3068 3053.72 0.680 0.677 100.47
Indians 4513 3093 3082.17 0.685 0.683 100.35
White Sox 4409 3021 3013.27 0.685 0.683 100.26
Marlins 4338 3002 2994.74 0.692 0.690 100.24
Diamondbacks 4224 2892 2886.85 0.685 0.683 100.18
Giants 4232 2897 2898.76 0.685 0.685 99.94
Tigers 4536 3105 3109.78 0.685 0.686 99.85
Phillies 4396 3054 3062.15 0.695 0.697 99.73
Mets 4335 3024 3033.17 0.698 0.700 99.70
Rangers 4667 3124 3136.62 0.669 0.672 99.60
Padres 4419 3074 3088.40 0.696 0.699 99.53
Pirates 4683 3157 3175.46 0.674 0.678 99.42
Rockies 4535 3072 3090.76 0.677 0.682 99.39
Nationals 4417 3041 3060.09 0.688 0.693 99.38
Orioles 4540 3119 3139.36 0.687 0.691 99.35
Yankees 4349 2962 2984.01 0.681 0.686 99.26
Reds 4299 2889 2921.00 0.672 0.679 98.90
Royals 4413 3038 3076.09 0.688 0.697 98.76

The Rays turned in the best combination of good pitching and good defense. Their .699 predicted DER was second to the Mets. Unlike the Mets, however, the Rays fielded more balls than expected, giving the best DER, but only the third best Index. The Blue Jays turned in a tremendous defensive season, a big reason their pitching staff did so well in ERA in 2008.
The bottom of this chart is very interesting. From the Padres down, teams 23-30 all turned out to be very poor teams with the exception of the Yankees. Defense didn’t necessarily help a team win, as the Phillies were pretty middle of the road, but it certainly seemed to indicate a pretty bad team.
Note that last season, the Devil Rays were at the very bottom of the list. They improved both their predicted DER and their ability to turn batted balls into outs. That was enough to lower their runs allowed from 944 to 671 and make them American League champions.

February 17, 2008 February 15, 2008

Range Presentation

On Saturday morning I’ll make a presentation at the American Association for the Advancement of Science (AAAS) meeting on the Probabilistic Model of Range. The symposia is called New Techniques in the Evaluation and Prediction of Baseball Performance and meets in the Hynes Convention Center, Second Level, Room 202 at 8:30 AM. Alan Schwarz and Shane Jensen will also present.

January 10, 2008 November 26, 2007

Does a Good Offense Improve a Defense?

One criticism leveled at the Probabilistic Model of Range this year is that due to building the models based on the visiting team fielders, teams with good offenses get a bonus defensively. The example given is the Yankees, but there are other high offense teams ranked high in terms of PMR.
The idea is that since the Yankees hit well, their opponents DER must by definition be low. A ball put in play by the Yankees must have a lower probability of being turned into an out. This causes the model to underestimate the fielding ability of opponents, and over estimate the fielding ability of the Yankees. If the model contained one parameter, ballpark, then this would be absolutely true. However, there are six parameters, including a vector indicating the direction of the ball. I propose that the Yankees hit better than their opponents not because a random ball in play has a higher probability of falling for a hit, but because the Yankees do a better job of hitting balls where they are tough to field.
The following table shows the number of ground balls hit by the Yankees and their opponents by vector:

Vector Yankees Opponents Predicted DER
25 4 4 0.000
26 12 14 0.000
27 37 26 0.766
28 118 57 0.898
29 175 118 0.706
30 193 156 0.671
31 148 119 0.844
32 111 82 0.934
33 164 136 0.868
34 114 105 0.585
35 100 74 0.535
36 117 124 0.624
37 101 108 0.617
38 116 150 0.838
39 119 131 0.865
40 163 139 0.764
41 165 174 0.550
42 110 130 0.688
43 61 55 0.847
44 35 40 0.572
45 7 13 0.010
46 5 5 0.000

As you can see, the low probability vectors are 29-30, the shortstop hole, 34-37, up the middle, 41-42, the second base hole, and 44, right down the first base line. I’m not looking at the foul vectors where a ball is always a hit. Breaking these down:

Ground balls Yankees Opponents
In Holes 1110 1029
At Fielders 882 895

So the Yankees hit more grounders where they are less likely to be fielded, and fewer grounders where they are more likely to be fielded than their opponents. Later I want to look at how the Yankees field home and road. If they field much better at home, then the objection still my have some validity.

November 25, 2007

Probabilistic Model of Range, Pitchers, 2007

To complete the survery of range, here are how pitchers rank. First the teams:

Team Pitchers PMR, 2007, Visit Smooth Distance Model, 2007 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Astros 4530 205 183.71 0.045 0.041 111.59
Padres 4476 243 228.50 0.054 0.051 106.35
Rockies 4599 218 206.59 0.047 0.045 105.52
Indians 4548 181 171.92 0.040 0.038 105.28
Mets 4362 173 164.61 0.040 0.038 105.09
White Sox 4545 196 186.52 0.043 0.041 105.08
Yankees 4511 181 172.92 0.040 0.038 104.67
Tigers 4486 167 159.73 0.037 0.036 104.55
Red Sox 4226 149 142.79 0.035 0.034 104.35
Mariners 4535 174 167.33 0.038 0.037 103.99
Blue Jays 4349 200 194.00 0.046 0.045 103.09
Phillies 4505 193 187.33 0.043 0.042 103.02
Pirates 4608 204 200.82 0.044 0.044 101.58
Cubs 4177 166 163.95 0.040 0.039 101.25
Rangers 4518 197 195.59 0.044 0.043 100.72
Braves 4404 206 204.60 0.047 0.046 100.69
Devil Rays 4378 148 147.07 0.034 0.034 100.63
Twins 4384 150 152.30 0.034 0.035 98.49
Orioles 4403 160 162.54 0.036 0.037 98.44
Nationals 4591 167 170.78 0.036 0.037 97.78
Marlins 4491 178 182.52 0.040 0.041 97.52
Angels 4325 143 146.86 0.033 0.034 97.37
Giants 4467 159 163.87 0.036 0.037 97.03
Diamondbacks 4351 207 213.40 0.048 0.049 97.00
Cardinals 4587 158 166.21 0.034 0.036 95.06
Athletics 4499 165 174.70 0.037 0.039 94.45
Brewers 4392 179 192.64 0.041 0.044 92.92
Dodgers 4310 189 205.96 0.044 0.048 91.76
Reds 4533 162 180.13 0.036 0.040 89.93
Royals 4528 151 179.20 0.033 0.040 84.27

The Padres not only induce the most predicted outs back to the pitcher, they exceed those outs by a great deal. Maddux is one reason:

Individual Pitcher PMR, 2007, Visit Smooth Distance Model, 2007 data only (400 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Chris Sampson 414 24 15.23 0.058 0.037 157.55
Matt Cain 571 26 19.79 0.046 0.035 131.37
Chad Durbin 417 15 11.48 0.036 0.028 130.65
Shaun Marcum 456 27 20.71 0.059 0.045 130.37
Steve Trachsel 549 35 26.89 0.064 0.049 130.17
Mike Mussina 512 27 20.84 0.053 0.041 129.54
Woody Williams 632 36 27.90 0.057 0.044 129.04
Aaron Cook 572 37 28.69 0.065 0.050 128.98
Miguel Batista 615 26 20.17 0.042 0.033 128.92
Jon Garland 705 34 26.84 0.048 0.038 126.66
Kelvim Escobar 572 17 13.58 0.030 0.024 125.21
Wandy Rodriguez 536 21 16.87 0.039 0.031 124.46
Greg Maddux 681 53 42.87 0.078 0.063 123.64
Ervin Santana 457 13 10.59 0.028 0.023 122.72
Jake Peavy 571 30 24.58 0.053 0.043 122.03
Brandon Webb 692 53 43.55 0.077 0.063 121.69
Mike Bacsik 414 15 12.35 0.036 0.030 121.42
Tim Wakefield 600 24 19.83 0.040 0.033 121.05
Carlos Zambrano 610 30 25.00 0.049 0.041 119.98
Javier Vazquez 583 28 23.46 0.048 0.040 119.34
Adam Eaton 525 22 18.49 0.042 0.035 119.00
Nate Robertson 573 27 22.77 0.047 0.040 118.56
John Danks 427 15 12.83 0.035 0.030 116.94
James Shields 615 26 22.26 0.042 0.036 116.80
Justin Verlander 577 17 14.69 0.029 0.025 115.76
Chien-Ming Wang 643 34 29.61 0.053 0.046 114.84
Carlos Silva 699 27 23.54 0.039 0.034 114.70
John Smoltz 586 30 26.16 0.051 0.045 114.69
Dustin McGowan 484 31 27.18 0.064 0.056 114.04
Justin Germano 426 21 18.42 0.049 0.043 114.04
Ted Lilly 586 24 21.09 0.041 0.036 113.81
Dontrelle Willis 667 39 34.32 0.058 0.051 113.64
Kyle Davies 432 16 14.08 0.037 0.033 113.60
Sergio Mitre 522 29 25.58 0.056 0.049 113.35
Daisuke Matsuzaka 555 24 21.21 0.043 0.038 113.18
Joe Blanton 750 28 25.10 0.037 0.033 111.54
Jake Westbrook 481 27 24.51 0.056 0.051 110.17
Andy Sonnanstine 408 14 12.81 0.034 0.031 109.28
Matt Chico 548 16 14.77 0.029 0.027 108.33
Jamie Moyer 633 30 27.83 0.047 0.044 107.81
Johan Santana 555 24 22.27 0.043 0.040 107.75
Tom Glavine 674 27 25.15 0.040 0.037 107.37
C.C. Sabathia 701 24 22.47 0.034 0.032 106.80
Brett Tomko 415 16 14.99 0.039 0.036 106.77
Jarrod Washburn 627 20 18.81 0.032 0.030 106.33
Noah Lowry 502 23 21.69 0.046 0.043 106.02
Jeremy Guthrie 527 21 19.85 0.040 0.038 105.81
Chris Capuano 456 28 26.47 0.061 0.058 105.77
Fausto Carmona 654 36 34.14 0.055 0.052 105.43
Roy Halladay 722 36 34.31 0.050 0.048 104.94
Mark Buehrle 648 33 31.47 0.051 0.049 104.86
Bronson Arroyo 661 27 25.79 0.041 0.039 104.71
David Bush 594 24 23.12 0.040 0.039 103.80
Kyle Kendrick 401 20 19.29 0.050 0.048 103.69
David Wells 545 20 19.32 0.037 0.035 103.52
Erik Bedard 431 17 16.46 0.039 0.038 103.29
Jeff Suppan 708 34 32.99 0.048 0.047 103.05
Barry Zito 608 21 20.40 0.035 0.034 102.94
Jason Marquis 626 25 24.34 0.040 0.039 102.70
Jeff Francis 662 30 29.40 0.045 0.044 102.04
Kameron Loe 464 28 27.74 0.060 0.060 100.93
Livan Hernandez 704 38 37.71 0.054 0.054 100.78
Paul Maholm 583 30 29.99 0.051 0.051 100.02
Matt Morris 693 28 28.14 0.040 0.041 99.50
Kip Wells 522 20 20.10 0.038 0.039 99.48
Ian Snell 606 20 20.14 0.033 0.033 99.33
Odalis Perez 494 18 18.33 0.036 0.037 98.20
John Maine 527 17 17.37 0.032 0.033 97.86
Cole Hamels 495 23 23.78 0.046 0.048 96.70
Chad Gaudin 603 21 21.76 0.035 0.036 96.51
A.J. Burnett 414 15 15.67 0.036 0.038 95.73
Mike Maroth 417 17 17.85 0.041 0.043 95.22
Tim Hudson 722 41 43.25 0.057 0.060 94.81
Felix Hernandez 567 26 27.45 0.046 0.048 94.73
Jered Weaver 514 18 19.04 0.035 0.037 94.51
Brian Bannister 540 20 21.19 0.037 0.039 94.40
Oliver Perez 483 11 11.65 0.023 0.024 94.40
Micah Owings 461 22 23.32 0.048 0.051 94.34
Kyle Lohse 615 22 23.48 0.036 0.038 93.71
Jeff Weaver 511 10 10.72 0.020 0.021 93.32
Chuck James 484 15 16.10 0.031 0.033 93.18
Tom Gorzelanny 642 24 25.76 0.037 0.040 93.18
Roy Oswalt 675 36 38.80 0.053 0.057 92.79
Adam Wainwright 654 28 30.29 0.043 0.046 92.44
Jose Contreras 647 22 23.80 0.034 0.037 92.43
Scott Kazmir 534 16 17.46 0.030 0.033 91.64
Lenny DiNardo 430 15 16.48 0.035 0.038 91.04
Derek Lowe 604 27 29.69 0.045 0.049 90.95
Andy Pettitte 690 26 28.59 0.038 0.041 90.93
Paul Byrd 686 21 23.15 0.031 0.034 90.72
Aaron Harang 642 23 25.44 0.036 0.040 90.42
Doug Davis 597 32 36.17 0.054 0.061 88.47
Scott Olsen 578 21 23.75 0.036 0.041 88.41
Josh Fogg 556 21 23.79 0.038 0.043 88.26
Scott Baker 454 13 14.84 0.029 0.033 87.58
Rich Hill 527 21 23.98 0.040 0.046 87.57
Brad Penny 643 25 28.93 0.039 0.045 86.41
Kevin Millwood 571 16 18.75 0.028 0.033 85.32
John Lackey 668 24 28.71 0.036 0.043 83.60
Braden Looper 581 19 23.06 0.033 0.040 82.41
Chad Billingsley 400 17 20.94 0.043 0.052 81.18
Josh Beckett 566 11 13.68 0.019 0.024 80.41
Vicente Padilla 407 12 15.11 0.029 0.037 79.44
Chris Young 448 11 14.27 0.025 0.032 77.08
Claudio Vargas 419 14 18.20 0.033 0.043 76.91
Edwin Jackson 516 12 15.91 0.023 0.031 75.43
Jeremy Bonderman 533 14 18.78 0.026 0.035 74.53
Boof Bonser 539 14 18.92 0.026 0.035 74.00
Jorge de la Rosa 431 11 15.32 0.026 0.036 71.79
Gil Meche 663 20 28.05 0.030 0.042 71.31
Julian Tavarez 455 11 15.86 0.024 0.035 69.38
Brad Thompson 451 10 14.58 0.022 0.032 68.61
Matt Belisle 570 15 22.66 0.026 0.040 66.18
Dan Haren 661 17 26.01 0.026 0.039 65.36
Daniel Cabrera 608 13 20.82 0.021 0.034 62.44
Ben Sheets 431 11 19.19 0.026 0.045 57.31
Curt Schilling 485 7 12.87 0.014 0.027 54.40

Peavy is also very good, however. Looking at Schilling’s low ranking should give his opponents a clue as to his weakness next season. Bunting for hits against Curt might be a very good idea.

November 21, 2007

Probabilistic Model of Range, Catchers, 2007

Fielding by catchers isn’t the most important aspect of the job, and the number of outs attributed to the postion are few. But for completeness, here are the tables for the position. First, teams:

Team Catchers PMR, 2007, Visit Smooth Distance Model, 2007 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Cardinals 4587 57 47.59 0.012 0.010 119.76
Braves 4404 64 55.33 0.015 0.013 115.67
Rockies 4599 76 66.39 0.017 0.014 114.48
Yankees 4511 66 59.51 0.015 0.013 110.90
Dodgers 4310 68 62.43 0.016 0.014 108.91
Angels 4325 39 35.96 0.009 0.008 108.47
Marlins 4491 57 53.73 0.013 0.012 106.09
Nationals 4591 60 57.21 0.013 0.012 104.87
Astros 4530 58 55.59 0.013 0.012 104.33
Tigers 4486 50 47.96 0.011 0.011 104.25
White Sox 4545 50 49.10 0.011 0.011 101.82
Giants 4467 58 57.06 0.013 0.013 101.64
Cubs 4177 51 50.42 0.012 0.012 101.15
Reds 4533 74 73.68 0.016 0.016 100.44
Blue Jays 4349 50 49.79 0.011 0.011 100.42
Royals 4528 46 45.90 0.010 0.010 100.22
Rangers 4518 48 48.05 0.011 0.011 99.90
Red Sox 4226 49 49.56 0.012 0.012 98.88
Devil Rays 4378 41 41.89 0.009 0.010 97.88
Indians 4548 36 37.23 0.008 0.008 96.70
Diamondbacks 4351 50 51.94 0.011 0.012 96.26
Padres 4476 59 61.48 0.013 0.014 95.97
Orioles 4403 37 38.96 0.008 0.009 94.97
Mariners 4535 42 44.86 0.009 0.010 93.63
Pirates 4608 51 54.75 0.011 0.012 93.15
Phillies 4505 56 60.25 0.012 0.013 92.95
Twins 4384 30 32.50 0.007 0.007 92.32
Athletics 4499 37 41.10 0.008 0.009 90.03
Mets 4362 50 56.67 0.011 0.013 88.22
Brewers 4392 51 59.91 0.012 0.014 85.13

The Mets are Brewers, who just completed a trade at the position, came out at the bottom team wise. New York might have been better off with Torrealba, at least fielding wise.

Individual Catcher PMR, 2007, Visit Smooth Distance Model, 2007 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Yadier Molina 2719 32 26.82 0.012 0.010 119.33
Brian McCann 3433 52 43.65 0.015 0.013 119.14
Yorvit Torrealba 2863 54 45.73 0.019 0.016 118.07
Miguel Olivo 3131 44 37.90 0.014 0.012 116.11
Jorge Posada 3484 50 43.52 0.014 0.012 114.90
Eric Munson 1012 17 15.02 0.017 0.015 113.21
Jeff Mathis 1421 21 18.96 0.015 0.013 110.78
Jose Molina 1431 16 14.52 0.011 0.010 110.18
Kelly Shoppach 1365 14 12.72 0.010 0.009 110.07
Gerald Laird 3118 37 33.82 0.012 0.011 109.40
Russell Martin 3687 60 55.76 0.016 0.015 107.60
Gregg Zaun 2559 32 29.91 0.013 0.012 106.98
Brad Ausmus 2728 33 31.07 0.012 0.011 106.22
Chris Iannetta 1613 20 18.83 0.012 0.012 106.20
Toby Hall 1002 10 9.45 0.010 0.009 105.82
Gary Bennett 1223 15 14.18 0.012 0.012 105.75
Jesus Flores 1258 21 19.87 0.017 0.016 105.69
Ivan Rodriguez 3216 41 38.98 0.013 0.012 105.19
John Buck 2879 30 28.52 0.010 0.010 105.18
Brian Schneider 3333 39 37.34 0.012 0.011 104.43
Mike Napoli 1814 12 11.53 0.007 0.006 104.09
Miguel Montero 1629 20 19.57 0.012 0.012 102.20
Javier Valentin 1494 20 19.72 0.013 0.013 101.42
Bengie Molina 3389 42 41.51 0.012 0.012 101.17
Mike Rabelo 1270 9 8.99 0.007 0.007 100.16
Dave Ross 2603 46 46.32 0.018 0.018 99.32
A.J. Pierzynski 3270 37 37.40 0.011 0.011 98.92
Ronny Paulino 3423 40 40.81 0.012 0.012 98.02
Michael Barrett 2291 33 33.76 0.014 0.015 97.74
Ramon Hernandez 2617 24 24.82 0.009 0.009 96.71
Josh Bard 2761 38 39.31 0.014 0.014 96.67
Mike Redmond 1461 11 11.42 0.008 0.008 96.30
Kurt Suzuki 1696 14 14.61 0.008 0.009 95.82
Paul Lo Duca 2922 33 34.63 0.011 0.012 95.29
Dioner Navarro 2901 25 26.29 0.009 0.009 95.09
Jason LaRue 1537 16 16.89 0.010 0.011 94.72
Jason Kendall 3448 31 32.85 0.009 0.010 94.37
Carlos Ruiz 2802 44 46.89 0.016 0.017 93.83
Jason Varitek 3061 33 35.49 0.011 0.012 92.99
Chris Snyder 2611 26 28.37 0.010 0.011 91.64
Johnny Estrada 2922 36 39.51 0.012 0.014 91.12
Kenji Johjima 3548 32 35.22 0.009 0.010 90.85
Rob Bowen 1268 11 12.14 0.009 0.010 90.59
Jarrod Saltalamacchia 1201 11 12.25 0.009 0.010 89.78
Victor Martinez 3183 22 24.51 0.007 0.008 89.76
Joe Mauer 2331 16 18.22 0.007 0.008 87.83
Paul Bako 1290 8 9.42 0.006 0.007 84.90
Matt Treanor 1317 13 15.83 0.010 0.012 82.12
Jason Phillips 1025 7 8.88 0.007 0.009 78.82
Damian Miller 1367 13 17.73 0.010 0.013 73.30

Two of the old men, Posada and Ivan Rodriguez, are still cat like behind the plate.

November 17, 2007

Probabilistic Model of Range, Firstbasemen, 2007

Here’s a look at the range of first basemen. First, the team table. The Yankees at least did a good job of improving their defense at the position:

Team First Basemen PMR, 2007, Visit Smooth Distance Model, 2007 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Cardinals 4587 366 329.22 0.080 0.072 111.17
Yankees 4511 314 285.78 0.070 0.063 109.87
Giants 4467 325 304.72 0.073 0.068 106.66
Royals 4528 315 296.64 0.070 0.066 106.19
Padres 4476 311 295.59 0.069 0.066 105.21
Cubs 4177 283 269.44 0.068 0.065 105.03
Braves 4404 320 306.86 0.073 0.070 104.28
Angels 4325 308 296.32 0.071 0.069 103.94
Pirates 4608 315 304.66 0.068 0.066 103.39
Rockies 4599 336 326.21 0.073 0.071 103.00
Astros 4530 335 328.42 0.074 0.072 102.00
Red Sox 4226 323 321.65 0.076 0.076 100.42
Brewers 4392 294 293.80 0.067 0.067 100.07
Diamondbacks 4351 292 292.06 0.067 0.067 99.98
Devil Rays 4378 316 317.18 0.072 0.072 99.63
Blue Jays 4349 337 339.17 0.077 0.078 99.36
Orioles 4403 273 277.29 0.062 0.063 98.45
Athletics 4499 303 310.84 0.067 0.069 97.48
Dodgers 4310 285 293.60 0.066 0.068 97.07
Mariners 4535 297 308.37 0.065 0.068 96.31
Mets 4362 285 296.03 0.065 0.068 96.27
White Sox 4545 309 321.66 0.068 0.071 96.06
Indians 4548 295 307.96 0.065 0.068 95.79
Tigers 4486 296 310.16 0.066 0.069 95.44
Rangers 4518 283 297.18 0.063 0.066 95.23
Phillies 4505 302 317.82 0.067 0.071 95.02
Marlins 4491 291 307.52 0.065 0.068 94.63
Twins 4384 311 337.63 0.071 0.077 92.11
Reds 4533 263 290.87 0.058 0.064 90.42
Nationals 4591 270 299.99 0.059 0.065 90.00

It looks like the Nationals missed Nick Johnson’s glove at first base. It’s even more evident in the individual listing:

Individual First Basemen PMR, 2007, Visit Smooth Distance Model, 2007 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Doug Mientkiewicz 1427 109 92.24 0.076 0.065 118.17
Rich Aurilia 1115 70 59.31 0.063 0.053 118.02
Andy Phillips 1325 93 80.91 0.070 0.061 114.95
Albert Pujols 4220 349 308.82 0.083 0.073 113.01
Ryan Shealy 1336 88 78.66 0.066 0.059 111.87
Derrek Lee 3691 254 239.65 0.069 0.065 105.99
Casey Kotchman 3085 225 214.03 0.073 0.069 105.12
Adrian Gonzalez 4401 307 292.23 0.070 0.066 105.06
Tony Clark 1345 98 93.58 0.073 0.070 104.72
Scott Thorman 1859 126 120.75 0.068 0.065 104.35
Todd Helton 4170 306 293.61 0.073 0.070 104.22
Ryan Klesko 2504 190 183.08 0.076 0.073 103.78
Ben Broussard 1057 72 69.60 0.068 0.066 103.45
James Loney 2355 168 162.45 0.071 0.069 103.42
Ross Gload 2169 153 148.21 0.071 0.068 103.23
Carlos Pena 3708 277 268.41 0.075 0.072 103.20
Adam LaRoche 4141 283 274.52 0.068 0.066 103.09
Nick Swisher 1075 91 88.68 0.085 0.082 102.61
Kevin Youkilis 3208 253 249.42 0.079 0.078 101.44
Matt Stairs 1024 86 85.07 0.084 0.083 101.10
Lance Berkman 3315 229 229.22 0.069 0.069 99.91
Lyle Overbay 2887 221 221.32 0.077 0.077 99.86
Prince Fielder 4073 266 271.21 0.065 0.067 98.08
Conor Jackson 2647 173 176.80 0.065 0.067 97.85
Mark Teixeira 3404 240 246.41 0.071 0.072 97.40
Carlos Delgado 3649 244 251.39 0.067 0.069 97.06
Kevin Millar 2666 171 176.83 0.064 0.066 96.70
Robert Fick 1221 80 82.79 0.066 0.068 96.64
Aubrey Huff 1295 67 69.45 0.052 0.054 96.47
Ryan Howard 3871 263 274.29 0.068 0.071 95.88
Paul Konerko 3864 256 267.48 0.066 0.069 95.71
Richie Sexson 3137 201 210.24 0.064 0.067 95.61
Aaron Boone 1219 85 89.73 0.070 0.074 94.72
Brad Wilkerson 1444 82 86.94 0.057 0.060 94.32
Ryan Garko 3271 209 223.33 0.064 0.068 93.58
Sean Casey 3100 198 211.63 0.064 0.068 93.56
Dan Johnson 2679 166 177.43 0.062 0.066 93.56
Justin Morneau 3872 281 302.07 0.073 0.078 93.02
Mike Jacobs 2821 170 183.72 0.060 0.065 92.53
Jeff Conine 1595 86 94.78 0.054 0.059 90.74
Scott Hatteberg 2457 144 160.66 0.059 0.065 89.63
Nomar Garciaparra 1678 106 118.73 0.063 0.071 89.28
Dmitri Young 2808 162 184.81 0.058 0.066 87.66

Once again, Albert Pujols comes out on top among every day first basemen. If the Yankees had kept Miguel Cairo off first, they might have finished first as a team. Not only did Nomar not hit like a first baseman, he didn’t even field well.
Correction: Cairo, not Cabrera.

November 16, 2007

Probabilistic Model of Range, Leftfielders, 2007

Here’s something the Orioles excelled at during 2007, fielding by leftfielders:

Team Leftfielders PMR, 2007, Visit Smooth Distance Model, 2007 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Orioles 4403 362 343.61 0.082 0.078 105.35
Indians 4548 339 325.23 0.075 0.072 104.23
Braves 4404 316 306.69 0.072 0.070 103.04
Rangers 4518 337 327.32 0.075 0.072 102.96
Nationals 4591 352 341.94 0.077 0.074 102.94
Yankees 4511 334 324.93 0.074 0.072 102.79
Brewers 4392 322 314.81 0.073 0.072 102.28
Mets 4362 324 317.91 0.074 0.073 101.91
Padres 4476 310 305.07 0.069 0.068 101.62
Royals 4528 373 367.39 0.082 0.081 101.53
Devil Rays 4378 339 334.26 0.077 0.076 101.42
Cubs 4177 341 337.65 0.082 0.081 100.99
Diamondbacks 4351 349 345.83 0.080 0.079 100.92
Blue Jays 4349 294 292.63 0.068 0.067 100.47
Dodgers 4310 288 287.78 0.067 0.067 100.08
Angels 4325 340 341.60 0.079 0.079 99.53
Giants 4467 314 317.61 0.070 0.071 98.86
Tigers 4486 327 331.60 0.073 0.074 98.61
Marlins 4491 274 278.60 0.061 0.062 98.35
Astros 4530 285 290.69 0.063 0.064 98.04
Athletics 4499 337 344.34 0.075 0.077 97.87
White Sox 4545 318 325.73 0.070 0.072 97.63
Pirates 4608 303 310.81 0.066 0.067 97.49
Rockies 4599 317 326.69 0.069 0.071 97.03
Reds 4533 326 336.27 0.072 0.074 96.95
Twins 4384 334 345.60 0.076 0.079 96.64
Phillies 4505 282 295.91 0.063 0.066 95.30
Red Sox 4226 284 299.24 0.067 0.071 94.91
Cardinals 4587 320 346.16 0.070 0.075 92.44
Mariners 4535 288 315.31 0.064 0.070 91.34

Among individuals, Matt Diaz had a career year with the glove as well as the bat.

Individual Leftfielder PMR, 2007, Visit Smooth Distance Model, 2007 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Matt Diaz 2064 155 142.05 0.075 0.069 109.11
Jose Cruz 1099 89 82.33 0.081 0.075 108.10
Joey Gathright 1595 154 142.69 0.097 0.089 107.93
Jay Payton 2776 231 214.85 0.083 0.077 107.52
David Dellucci 1210 97 91.32 0.080 0.075 106.22
Scott Hairston 1689 115 108.48 0.068 0.064 106.01
Wily Mo Pena 1126 68 64.97 0.060 0.058 104.66
Ryan Church 2304 196 188.59 0.085 0.082 103.93
Geoff Jenkins 2985 243 234.55 0.081 0.079 103.60
Carl Crawford 3623 286 276.65 0.079 0.076 103.38
Hideki Matsui 3091 214 207.16 0.069 0.067 103.30
Adam Lind 1969 137 132.73 0.070 0.067 103.22
Jason Michaels 1567 117 113.59 0.075 0.072 103.00
Reggie Willits 1557 151 146.83 0.097 0.094 102.84
Reed Johnson 1518 108 105.47 0.071 0.069 102.40
Emil Brown 1909 155 153.22 0.081 0.080 101.16
Eric Byrnes 2924 239 236.90 0.082 0.081 100.89
Alfonso Soriano 3074 245 243.79 0.080 0.079 100.50
Rob Mackowiak 1468 98 97.52 0.067 0.066 100.49
Kenny Lofton 1189 82 82.28 0.069 0.069 99.66
Willie Harris 1873 138 139.21 0.074 0.074 99.13
Ryan Ludwick 1011 86 86.83 0.085 0.086 99.04
Frank Catalanotto 1540 98 99.82 0.064 0.065 98.18
Jason Bay 3974 266 271.62 0.067 0.068 97.93
Luis Gonzalez 3008 192 196.31 0.064 0.065 97.81
Matt Holliday 4331 296 303.68 0.068 0.070 97.47
Carlos Lee 4244 261 268.68 0.061 0.063 97.14
Moises Alou 2105 138 142.80 0.066 0.068 96.64
Shannon Stewart 3606 277 287.12 0.077 0.080 96.47
Kevin Mench 1139 55 57.41 0.048 0.050 95.81
Craig Monroe 2512 166 174.76 0.066 0.070 94.99
Garret Anderson 2169 143 150.84 0.066 0.070 94.81
Scott Podsednik 1421 108 114.15 0.076 0.080 94.61
Josh Willingham 3653 211 223.26 0.058 0.061 94.51
Adam Dunn 3691 245 259.98 0.066 0.070 94.24
Terrmel Sledge 1192 77 82.16 0.065 0.069 93.72
Barry Bonds 2588 162 173.93 0.063 0.067 93.14
Jason Kubel 2153 159 172.31 0.074 0.080 92.27
Raul Ibanez 3559 224 243.95 0.063 0.069 91.82
Manny Ramirez 2925 182 198.85 0.062 0.068 91.53
Chris Duncan 2437 158 175.74 0.065 0.072 89.90
Pat Burrell 3176 176 198.31 0.055 0.062 88.75

There’s no real surprises at the bottom of the list. Bonds, however, fell off quite a bit. He was average in 2006, but well below average in 2007. You can also see that there are few regular leftfielders. Only twelve players on the list were on the field at that position for at least 3000 balls in play.