November 21, 2007

Probabilistic Model of Range, Catchers, 2007

Fielding by catchers isn’t the most important aspect of the job, and the number of outs attributed to the postion are few. But for completeness, here are the tables for the position. First, teams:

Team Catchers PMR, 2007, Visit Smooth Distance Model, 2007 data only
Team In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Cardinals 4587 57 47.59 0.012 0.010 119.76
Braves 4404 64 55.33 0.015 0.013 115.67
Rockies 4599 76 66.39 0.017 0.014 114.48
Yankees 4511 66 59.51 0.015 0.013 110.90
Dodgers 4310 68 62.43 0.016 0.014 108.91
Angels 4325 39 35.96 0.009 0.008 108.47
Marlins 4491 57 53.73 0.013 0.012 106.09
Nationals 4591 60 57.21 0.013 0.012 104.87
Astros 4530 58 55.59 0.013 0.012 104.33
Tigers 4486 50 47.96 0.011 0.011 104.25
White Sox 4545 50 49.10 0.011 0.011 101.82
Giants 4467 58 57.06 0.013 0.013 101.64
Cubs 4177 51 50.42 0.012 0.012 101.15
Reds 4533 74 73.68 0.016 0.016 100.44
Blue Jays 4349 50 49.79 0.011 0.011 100.42
Royals 4528 46 45.90 0.010 0.010 100.22
Rangers 4518 48 48.05 0.011 0.011 99.90
Red Sox 4226 49 49.56 0.012 0.012 98.88
Devil Rays 4378 41 41.89 0.009 0.010 97.88
Indians 4548 36 37.23 0.008 0.008 96.70
Diamondbacks 4351 50 51.94 0.011 0.012 96.26
Padres 4476 59 61.48 0.013 0.014 95.97
Orioles 4403 37 38.96 0.008 0.009 94.97
Mariners 4535 42 44.86 0.009 0.010 93.63
Pirates 4608 51 54.75 0.011 0.012 93.15
Phillies 4505 56 60.25 0.012 0.013 92.95
Twins 4384 30 32.50 0.007 0.007 92.32
Athletics 4499 37 41.10 0.008 0.009 90.03
Mets 4362 50 56.67 0.011 0.013 88.22
Brewers 4392 51 59.91 0.012 0.014 85.13

The Mets are Brewers, who just completed a trade at the position, came out at the bottom team wise. New York might have been better off with Torrealba, at least fielding wise.

Individual Catcher PMR, 2007, Visit Smooth Distance Model, 2007 data only (1000 balls in play)
Player In Play Actual Outs Predicted Outs DER Predicted DER Ratio
Yadier Molina 2719 32 26.82 0.012 0.010 119.33
Brian McCann 3433 52 43.65 0.015 0.013 119.14
Yorvit Torrealba 2863 54 45.73 0.019 0.016 118.07
Miguel Olivo 3131 44 37.90 0.014 0.012 116.11
Jorge Posada 3484 50 43.52 0.014 0.012 114.90
Eric Munson 1012 17 15.02 0.017 0.015 113.21
Jeff Mathis 1421 21 18.96 0.015 0.013 110.78
Jose Molina 1431 16 14.52 0.011 0.010 110.18
Kelly Shoppach 1365 14 12.72 0.010 0.009 110.07
Gerald Laird 3118 37 33.82 0.012 0.011 109.40
Russell Martin 3687 60 55.76 0.016 0.015 107.60
Gregg Zaun 2559 32 29.91 0.013 0.012 106.98
Brad Ausmus 2728 33 31.07 0.012 0.011 106.22
Chris Iannetta 1613 20 18.83 0.012 0.012 106.20
Toby Hall 1002 10 9.45 0.010 0.009 105.82
Gary Bennett 1223 15 14.18 0.012 0.012 105.75
Jesus Flores 1258 21 19.87 0.017 0.016 105.69
Ivan Rodriguez 3216 41 38.98 0.013 0.012 105.19
John Buck 2879 30 28.52 0.010 0.010 105.18
Brian Schneider 3333 39 37.34 0.012 0.011 104.43
Mike Napoli 1814 12 11.53 0.007 0.006 104.09
Miguel Montero 1629 20 19.57 0.012 0.012 102.20
Javier Valentin 1494 20 19.72 0.013 0.013 101.42
Bengie Molina 3389 42 41.51 0.012 0.012 101.17
Mike Rabelo 1270 9 8.99 0.007 0.007 100.16
Dave Ross 2603 46 46.32 0.018 0.018 99.32
A.J. Pierzynski 3270 37 37.40 0.011 0.011 98.92
Ronny Paulino 3423 40 40.81 0.012 0.012 98.02
Michael Barrett 2291 33 33.76 0.014 0.015 97.74
Ramon Hernandez 2617 24 24.82 0.009 0.009 96.71
Josh Bard 2761 38 39.31 0.014 0.014 96.67
Mike Redmond 1461 11 11.42 0.008 0.008 96.30
Kurt Suzuki 1696 14 14.61 0.008 0.009 95.82
Paul Lo Duca 2922 33 34.63 0.011 0.012 95.29
Dioner Navarro 2901 25 26.29 0.009 0.009 95.09
Jason LaRue 1537 16 16.89 0.010 0.011 94.72
Jason Kendall 3448 31 32.85 0.009 0.010 94.37
Carlos Ruiz 2802 44 46.89 0.016 0.017 93.83
Jason Varitek 3061 33 35.49 0.011 0.012 92.99
Chris Snyder 2611 26 28.37 0.010 0.011 91.64
Johnny Estrada 2922 36 39.51 0.012 0.014 91.12
Kenji Johjima 3548 32 35.22 0.009 0.010 90.85
Rob Bowen 1268 11 12.14 0.009 0.010 90.59
Jarrod Saltalamacchia 1201 11 12.25 0.009 0.010 89.78
Victor Martinez 3183 22 24.51 0.007 0.008 89.76
Joe Mauer 2331 16 18.22 0.007 0.008 87.83
Paul Bako 1290 8 9.42 0.006 0.007 84.90
Matt Treanor 1317 13 15.83 0.010 0.012 82.12
Jason Phillips 1025 7 8.88 0.007 0.009 78.82
Damian Miller 1367 13 17.73 0.010 0.013 73.30

Two of the old men, Posada and Ivan Rodriguez, are still cat like behind the plate.

4 thoughts on “Probabilistic Model of Range, Catchers, 2007

  1. Tom

    Doesn’t home park play a huge role in this? I would think a catcher who plays at a park with a lot of foul territory would have outs recorded heavily skewed in his favor simply due to increased opportunities.

    ReplyReply
  2. SleepyCA

    Dave- can you clarify whether or not bunts fielded and turned into double plays count as one or two outs in the “actual outs” column?
    Also, do foul balls caught count, or does this only consider fair balls?

    ReplyReply
  3. David Pinto

    Double plays count as one out. I’m looking at the probability of turning a batted ball into an out.
    Yes, pop ups count, but the probability of catching a popup is so high that they don’t really help or hurt fielders.

    ReplyReply

Leave a Reply

Your email address will not be published. Required fields are marked *